Due to the heterogeneity of oils, the use of mixtures of lipases with different activity for a large number of glycerol-linked carboxylic acids that compose the substrate has been proposed as a better alternative than the use of one specific lipase preparation in the enzymatic synthesis of biodiesel. In this work, mixtures of lipases from different sources were evaluated in their soluble form in the ethanolysis of soybean oil. A mixture of lipases (50% of each lipase, in activity basis) from porcine pancreas (PPL) and Thermomyces lanuginosus lipase (TLL) gave the highest fatty acid ethyl ester (FAEE) yield (around 20 wt.%), while the individual lipases gave FAEE yields 100 and 5 times lower, respectively. These lipases were immobilized individually by the cross-linked enzyme aggregates (CLEAs) technique, yielding biocatalysts with 89 and 119% of expressed activity, respectively. A mixture of these CLEAs (also 50% of each lipase, in activity basis) gave 90.4 wt.% FAEE yield, while using separately CLEAs of PPL and TLL, the FAEE yields were 84.7 and 75.6 wt.%, respectively, under the same reaction conditions. The mixture of CLEAs could be reused (five cycles of 6 h) in the ethanolysis of soybean oil in a vortex flow-type reactor yielding an FAEE yield higher than 80% of that of the first batch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.