Interleukin-8 (IL-8The present findings suggest that CXCR2 is responsible for neutrophil chemotaxis and margination induced by IL-8. This selective antagonist will be a useful tool compound to define the role of CXCR2 in inflammatory diseases where neutrophils play a major role.
To establish well-characterized cellular reagents for the study of colon carcinoma, we have examined 19 human colorectal carcinoma cell lines with regard to morphology, ultrastructure, expression of tumor-associated antigens, proliferative capacity in vitro, anchorage-independent growth, oncogene expression, tumorigenicity and malignant potential. Cell lines examined were cultured under identical conditions, and in vitro and in vivo analyses were performed in parallel on replicate cultures. Three classes of colorectal cell lines were defined according to their tumorigenicity in nude mice. Class-1 lines formed rapidly progressing tumors in nearly all mice at an inoculum of 10(6) cells. Cell lines belonging to class-2 were less tumorigenic, producing tumors later and at a slower growth rate. Class-3 lines were non-tumorigenic under all experimental conditions tested. By Northern analysis, the oncogenes c-myc, H-ras, K-ras, N-ras, myb, fos and p53 were expressed in nearly all cell lines examined. In contrast, transcripts for abl, src and ros were not detected. The best in vitro predictor of tumorigenicity was colony formation in soft agar. There was no detectable correlation between tumorigenicity and metastatic potential, doubling time in vitro, production of tumor-associated markers, xenograft histology or expression of specific oncogenes.
The envelope glycoprotein gp120 of primate immunodeficiency viruses initiates viral attachment to CD4' cells by binding to the CD4 antigen on host cell surfaces.
Several CD4 mAbs have entered the clinic for the treatment of autoimmune diseases or transplant rejection. Most of these mAbs caused CD4 cell depletion, and some were murine mAbs which were further hampered by human anti-mouse Ab responses. To obviate these concerns, a primatized CD4 mAb, clenoliximab, was generated by fusing the V domains of a cynomolgus macaque mAb to human constant regions. The heavy chain constant region is a modified IgG4 containing two single residue substitutions designed to ablate residual Fc receptor binding activity and to stabilize heavy chain dimer formation. This study compares and contrasts the in vitro properties of clenoliximab with its matched IgG1 derivative, keliximab, which shares the same variable regions. Both mAbs show potent inhibition of in vitro T cell responses, lack of binding to complement component C1q, and inability to mediate complement-dependent cytotoxicity. However, clenoliximab shows markedly reduced binding to Fc receptors and therefore does not mediate Ab-dependent cell-mediated cytotoxicity or modulation/loss of CD4 from the surface of T cells, except in the presence of rheumatoid factor or activated monocytes. Thus, clenoliximab retains the key immunomodulatory attributes of keliximab without the liability of strong Fcγ receptor binding. In initial clinical trials, these properties have translated to a reduced incidence of CD4+ T cell depletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.