Callosal changes are already present in patients with amnestic mild cognitive impairment (MCI) and mild Alzheimer disease (AD). The precocious involvement of the anterior callosal subregion in amnestic MCI extends to posterior regions in mild AD. Two different mechanisms might contribute to the white matter changes in mild AD: wallerian degeneration in posterior subregions of the corpus callosum (suggested by increased axial diffusivity without fractional anisotropy modifications) and a retrogenesis process in the anterior callosal subregions (suggested by increased radial diffusivity without axial diffusivity modifications).
Abstract. The corpus callosum (CC), which connects the two cerebral hemispheres, is the largest white matter fiber bundle in the human brain. This structure presents a peculiar myelination pattern: it has small diameter fibers, located in the genu, which myelinate much later in normal development, and large diameter fibers of the splenium, which myelinate early in development. Although the pathology of AD mainly involves the cerebral gray matter structure, there is evidence that white matter may also be involved. To illustrate callosal white matter changes in AD pathology, in this review we summarize in vivo imaging studies in humans, focusing on region of interest, voxel-based morphometry, diffusion-weighted imaging, and diffusion tensor imaging techniques. Our aims were to identify where in the CC, when in the different stages of AD, and how callosal changes can be detected with different MRI techniques. Results showed that changes in the anterior (genu and anterior body) as well as in the posterior (isthmus and splenum) portions of the CC might already be present in the early stages of AD. These findings support the hypothesis that two mechanisms, Wallerian degeneration and myelin breakdown, might be responsible for the region-specific changes detected in AD patients. Wallerian degeneration affects the posterior CC subregion, which receives axons directly from those brain areas (temporo-parietal lobe regions) primarily affected by the AD pathology. Instead, the myelin breakdown process affects the later-myelinating CC subregion and explains the earlier involvement of the genu in CC atrophy.
The aim of this work was to investigate the hypothesis that multimodal MRI is able to detect the progressive disruption of volume and microstructure of subcortical structures in patients with amnestic mild cognitive impairment (a-MCI) and mild Alzheimer's disease (AD) in comparison with healthy controls (CTRL). We combined volumetric and diffusion tensor imaging (DTI) techniques in a cross-sectional study including 30 a-MCI, 30 AD patients, and 30 age-matched CTRL. We employed a fully automated model-based segmentation algorithm on 3 Tesla MRI anatomical images and accurate coregistration of DTI to anatomical images to extract regional values of DTI parameters. Both the hippocampi significantly and progressively decreased in volume from CTRL through MCI to AD. Both the thalami showed a progressive and significant decrease in volume from CTRL to AD. Mean diffusivity (MD) values increased progressively across the three groups in the bilateral hippocampus, amygdala, and in the right caudate. No differences in fractional anisotropy (FA) values were found. Two distinct but overlapping patterns of progression of structural (i.e., atrophy) and microstructural (i.e., MD increase) damage were observed. Particularly, the pattern of atrophy was mirrored by the increasing value of the averaged MD, which provided a further indicator of subtle tissue disruption in the hippocampal structure in mild AD patients. Combining different MRI modalities can allow identifying sensitive indicators of the subtle pathogenic mechanisms that occur in subcortical areas of AD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.