Robust innate behaviours are attractive systems for genetically dissecting how environmental cues are perceived and integrated to generate complex behaviours. During courtship, Drosophila males engage in a series of innate, stereotyped behaviours that are coordinated by specific sensory cues. However, little is known about the specific neural substrates mediating this complex behavioural programme. Genetic, developmental and behavioural studies have shown that the fruitless (fru) gene encodes a set of male-specific transcription factors (FruM) that act to establish the potential for courtship in Drosophila. FruM proteins are expressed in approximately 2% of central nervous system neurons, at least one subset of which coordinates the component behaviours of courtship. Here we have inserted the yeast GAL4 gene into the fru locus by homologous recombination and show that (1) FruM is expressed in subsets of all peripheral sensory systems previously implicated in courtship, (2) inhibition of FruM function in olfactory system components reduces olfactory-dependent changes in courtship behaviour, (3) transient inactivation of all FruM-expressing neurons abolishes courtship behaviour, with no other gross changes in general behaviour, and (4) 'masculinization' of FruM-expressing neurons in females is largely sufficient to confer male courtship behaviour. Together, these data demonstrate that FruM proteins specify the neural substrates of male courtship.
In Saccharomyces cerevisiae, the HMR-E silencer blocks site-specific interactions between proteins and their recognition sequences in the vicinity of the silencer. Silencer function is correlated with the firing of an origin of replication at HMR-E. An essential gene with a role in transcriptional silencing was identified by means of a screen for mutations affecting expression of HMR. This gene, known as ORC2, was shown to encode a component of the origin recognition complex that binds yeast origins of replication. A temperature-sensitive mutation in ORC2 disrupted silencing in cells grown at the permissive temperature. At the restrictive temperature, the orc2-1 mutation caused cell cycle arrest at a point in the cell cycle indicative of blocks in DNA replication. The orc2-1 mutation also resulted in the enhanced mitotic loss of a plasmid, suggestive of a defect in replication. These results provide strong evidence for an in vivo role of ORC in both chromosomal replication and silencing, and provide a link between the mechanism of silencing and DNA replication.
The dissatisfaction (dsf) gene is necessary for appropriate sexual behavior and sex-specific neural development in both sexes. dsf males are bisexual and mate poorly, while mutant females resist male courtship and fail to lay eggs. Males and females have sex-specific neural abnormalities. We have cloned dsf and rescued both behavioral and neural phenotypes. dsf encodes a nuclear receptor closely related to the vertebrate Tailless proteins and is expressed in both sexes in an extremely limited set of neurons in regions of the brain potentially involved in sexual behavior. Expression of a female transformer cDNA under the control of a dsf enhancer in males leads to dsf-like bisexual behavior.
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.