When Legionella pneumophila grows in HeLa cells, it alternates between a replicative form and a morphologically distinct "cyst-like" form termed MIF (mature intracellular form). MIFs are also formed in natural amoebic hosts and to a lesser extent in macrophages, but they do not develop in vitro. Since MIFs accumulate at the end of each growth cycle, we investigated the possibility that they are in vivo equivalents of stationaryphase (SP) bacteria, which are enriched for virulence traits. By electron microscopy, MIFs appeared as short, stubby rods with an electron-dense, laminar outer membrane layer and a cytoplasm largely occupied by inclusions of poly--hydroxybutyrate and laminations of internal membranes originating from the cytoplasmic membrane. These features may be responsible for the bright red appearance of MIFs by light microscopy following staining with the phenolic Giménez stain. In contrast, SP bacteria appeared as dull red rods after Giménez staining and displayed a typical gram-negative cell wall ultrastructure. Outer membranes from MIFs and SP bacteria were equivalent in terms of the content of the peptidoglycan-bound and disulfide bond cross-linked OmpS porin, although additional proteins, including Hsp60 (which acts as an invasin for HeLa cells), were detected only in preparations from MIFs. Proteomic analysis revealed differences between MIFs and SP forms; in particular, MIFs were enriched for an ϳ20-kDa protein, a potential marker of development. Compared with SP bacteria, MIFs were 10-fold more infectious by plaque assay, displayed increased resistance to rifampin (3-to 5-fold) and gentamicin (10-to 1,000-fold), resisted detergent-mediated lysis, and tolerated high pH. Finally, MIFs had a very low respiration rate, consistent with a decreased metabolic activity. Collectively, these results suggest that intracellular L. pneumophila differentiates into a cyst-like, environmentally resilient, highly infectious, post-SP form that is distinct from in vitro SP bacteria. Therefore, MIFs may represent the transmissible environmental forms associated with Legionnaires' disease.The genus Legionella is one of the most successful of all aquatic bacteria, consisting of over 40 named species, their numerous serogroups (7), and a collection of Legionella-like amoebal pathogens that usually exhibit an obligate intracellular lifestyle requiring a particular protozoan host (3). An obligate requirement for the amino acid cysteine (38), which cannot be substituted for by cystine (the oxidized form most commonly found in aerobic environments), conceivably limits members of the Legionella genus to an intracellular lifestyle (25,46) or to life in association with other microorganisms (46,56,63,66) that may constitute a source of cysteine. However, in a biofilm coculture model, persistence but not multiplication of legionellae could be strictly demonstrated, suggesting that natural growth may indeed require the intracellular environment of a protozoan host (52). Thus, the natural life cycle of Legionella most likely...
Nucleotide sequence analysis of an ϳ80-kb genomic region revealed an ϳ65-kb locus that bears hallmarks of a pathogenicity island. This locus includes homologues of a type IV secretion system, mobile genetic elements, and known virulence factors. Comparative studies with other Legionella pneumophila strains and serogroups indicated that this ϳ65-kb locus is unique to L. pneumophila serogroup 1 Philadelphia-1 strains.
Legionella pneumophila displays a biphasic developmental cycle in which replicating forms (RFs) differentiate postexponentially into highly infectious, cyst-like mature intracellular forms (MIFs). Using comparative protein profile analyses (MIFs versus RFs), we identified a 20-kDa protein, previously annotated as "Mip-like" protein, that was enriched in MIFs. However, this 20-kDa protein shared no similarity with Mip, a wellcharacterized peptidyl-prolyl isomerase of L. pneumophila, and for clarity we renamed it MagA (for "MIFassociated gene"). We monitored MagA levels across the growth cycle (in vitro and in vivo) by immunoblotting and established that MagA levels increased postexponentially in vitro (ϳ3-fold) and nearly 10-fold during MIF morphogenesis in HeLa cells. DNA sequence analysis of the magA locus revealed an upstream divergently transcribed gene, msrA, encoding a peptide methionine sulfoxide reductase and a shared promoter region containing direct and indirect repeat sequences as well as ؊10 hexamers often associated with stationaryphase regulation. While MagA has no known function, it contains a conserved CXXC motif commonly found in members of the thioredoxin reductase family and in AhpD reductases that are associated with alkylhydroperoxide reductase (AhpC), suggesting a possible role in protection from oxidative stress. MIFs from L. pneumophila strain Lp02 containing a magA deletion exhibited differences in Giménez staining, as well as an apparent increase in cytopathology to HeLa cells, but otherwise were unaltered in virulence traits. As demonstrated by this study, MagA appears to be a MIF-specific protein expressed late in intracellular growth that may serve as a useful marker of development.
Chicken from retail outlets located in Halifax, Nova Scotia, commonly contained blaCMY-2-bearing E coli. The relationship antibiotics used in food-producing animals and its effect on resistance of commensals and pathogens needs to be determined.
AmpC β-lactamase, altered porins, or both are usually responsible for cefoxitin resistance in Escherichia coli. We examined the relative importance of each. We studied 18 strains of clinical isolates with reduced cefoxitin susceptibility and 10 initially-susceptible strains passaged through cefoxitin-gradient plates. Of 18 wild-resistant strains, 9 had identical promoter mutations (including creation of a consensus 17-bp spacer) and related pulsed-field gel electrophoresis patterns; the other 9 strains were unrelated. Nine strains had attenuator mutations; two strains did not express OmpC or OmpF. After serial passage, 8 of 10 strains developed cefoxitin resistance, none developed promoter or attenuator mutations, 6 lost both the OmpC and OmpF porin proteins, and 1 showed decreased production of both. One strain had neither porin alteration or increased AmpC production. Porin mutants may occur more commonly and be less fit and less inclined to spread or cause disease than strains with increased β-lactamase expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.