The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies.
Canine X-linked severe combined immunodeficiency (XSCID) is due to mutations in the common gamma chain (␥c) gene and is identical clinically and immunologically to human XSCID, making it a true homologue of the human disease. Bone marrow-transplanted (BMT) XSCID dogs not only engraft donor T cells and reconstitute normal T-cell function but, in contrast to the majority of transplanted human XSCID patients, also engraft donor B cells and reconstitute normal humoral immune function. Shortly after our initial report of successful BMT of XSCID dogs, it soon became evident that transplanted XSCID dogs developed late-onset severe chronic cutaneous infections containing a newly described canine papillomavirus. This is analogous to the late-onset cutaneous papillomavirus infection recently described for human XSCID patients following BMT. Of 24 transplanted XSCID dogs followed for at least 1 year post-BMT, 71% developed chronic canine papillomavirus infection. Six of the transplanted dogs that developed cutaneous papillomas were maintained for >3 1/2 years post-BMT for use as breeders. Four of these six dogs (67%) developed invasive squamous cell carcinoma (SCC), with three of the dogs (75%) eventually developing metastatic SCC, an extremely rare consequence of SCC in the dog. This finding raises the question of whether SCC will develop in transplanted human XSCID patients later in life. Canine XSCID therefore provides an ideal animal model with which to study the role of the ␥c-dependent signaling pathway in the response to papillomavirus infections and the progression of these viral infections to metastatic SCC.Severe combined immunodeficiency (SCID) is a heterogeneous group of diseases characterized by the inability to mount humoral and cell-mediated immune responses, and it is invariably fatal within the first 2 years of life (9, 46). X-linked SCID (XSCID) is the most common form of the disease, representing approximately 50% of all human SCID cases (9, 18). XSCID is caused by mutations in the common gamma (␥c) subunit of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 (reviewed in references 4 and 34). Thus, the XSCID phenotype is the complex result of multiple cytokine defects. The shared usage of the ␥c subunit by receptors for growth factors that are critical for normal B-, NK-, and T-cell development and function explains the profound immunologic abnormalities and clinical severity of the disease.Since the first successful HLA-identical bone marrow transplant in a boy with SCID in 1968 (19), bone marrow transplantation (BMT) has become the treatment of choice for all forms of SCID (10,18,22). SCID patients receiving a histocompatible (HLA-identical) BMT have Ͼ90% long-term survival rates (10,18,22). However, the majority of patients do not have a histocompatible donor. Haploidentical (half-matched) BMT with T-cell depletion to prevent fatal graft-versus-host disease has become the standard therapy for SCID patients who lack a histocompatible donor (10,18,22). Although T-cell depletion...
Patients with defective ectodysplasin A (EDA) are affected by X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by sparse hair, inability to sweat, decreased lacrimation, frequent pulmonary infections, and missing and malformed teeth. The canine model of XLHED was used to study the developmental impact of EDA on secondary dentition, since dogs have an entirely brachyodont, diphyodont dentition similar to that in humans, as opposed to mice, which have only permanent teeth (monophyodont dentition), some of which are very different (aradicular hypsodont) than brachyodont human teeth. Also, clinical signs in humans and dogs with XLHED are virtually identical, whereas several are missing in the murine equivalent. In our model, the genetically missing EDA was compensated for by postnatal intravenous administration of soluble recombinant EDA. Untreated XLHED dogs have an incomplete set of conically shaped teeth similar to those seen in human patients with XLHED. After treatment with EDA, significant normalization of adult teeth was achieved in four of five XLHED dogs. Moreover, treatment restored normal lacrimation and resistance to eye and airway infections and improved sweating ability. These results not only provide proof of concept for a potential treatment of this orphan disease but also demonstrate an essential role of EDA in the development of secondary dentition.
Delivery of adeno-associated viral (AAV) vectors into the cerebrospinal fluid (CSF) can achieve gene transfer to cells throughout the brain and spinal cord, potentially making many neurological diseases tractable gene therapy targets. Identifying the optimal route of CSF access for intrathecal AAV delivery will be a critical step in translating this approach to clinical practice. We previously demonstrated that vector injection into the cisterna magna is a safe and effective method for intrathecal AAV delivery in nonhuman primates; however, this procedure is not commonly used in clinical practice. More routine methods of administration into the CSF are now being explored, including intracerebroventricular (ICV) injection and injection through a lumbar puncture. In this study, we compared ICV and intracisternal (IC) AAV administration in dogs. We also evaluated vector administration via lumbar puncture in nonhuman primates, with some animals placed in the Trendelenburg position after injection, a maneuver that has been suggested to improve cranial distribution of vector. In the dog study, ICV and IC vector administration resulted in similarly efficient transduction throughout the brain and spinal cord. However, animals in the ICV cohort developed encephalitis associated with a T-cell response to the transgene product, a phenomenon that was not observed in the IC cohort. In the nonhuman primate study, transduction efficiency was not improved by placing animals in the Trendelenburg position after injection. These findings illustrate important limitations of commonly used methods for CSF access in the context of AAV delivery, and will be important for informing the selection of a route of administration for first-in-human studies.
Over the last two decades, gene transfer experiments for the treatment of inherited or acquired diseases have mainly been performed in mice. While mice provide proof of principle and allow testing of a variety of therapeutic modalities, mouse models have some limitations, as only short-term experiments can be performed, their homogenous genetic background is unlike humans, and the knockout models do not always faithfully represent the human disease. Naturally occurring large animal models of human genetic diseases have become increasingly important despite the costs and the extensive clinical attention they require because of their similarities to human patients. Large animals are reasonably outbred, long lived allowing for longitudinal studies, are more similar in size to a neonate or small child providing an opportunity to address issues related to scaling up therapy, and many physiological parameters including the immune system are more similar to those in humans versus those in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.