The unusual architecture of the enzyme (MsAcT) isolated from Mycobacterium smegmatis forms the mechanistic basis for favoring alcoholysis over hydrolysis in water. Unlike hydrolases that perform alcoholysis only under anhydrous conditions, MsAcT demonstrates alcoholysis in substantially aqueous media and, in the presence of hydrogen peroxide, has a perhydrolysis:hydrolysis ratio 50-fold greater than that of the best lipase tested. The crystal structures of the apoenzyme and an inhibitor-bound form have been determined to 1.5 A resolution. MsAcT is an octamer in the asymmetric unit and forms a tightly associated aggregate in solution. Relative to other structurally similar monomers, MsAcT contains several insertions that contribute to the oligomerization and greatly restrict the shape of the active site, thereby limiting its accessibility. These properties create an environment by which MsAcT can catalyze transesterification reactions in an aqueous medium and suggests how a serine hydrolase can be engineered to be an efficient acyltransferase.
SummaryThe Spo0JA and Spo0JB proteins of Bacillus subtilis are similar to the ParA and ParB plasmid-partitioning proteins, respectively, and mutation of spo0JB prevents the expression of stage II genes of sporulation. This phenotype is a consequence of Spo0JA activity in the absence of Spo0JB, and its basis was unknown. In the studies reported here, Spo0JA was found specifically to dissociate transcription initiation complexes formed in vitro by the phosphorylated sporulation transcription factor Spo0A and RNA polymerase with the spoIIG promoter. This repressor-like activity is likely to be the basis for preventing the onset of differentiation in vivo. Spo0JB is known to neutralize Spo0JA activity in vivo and also to interact with a mitotic-like apparatus responsible for chromosome partitioning. These data suggest that Spo0JA and Spo0JB form a regulatory link between chromosome partition and development gene expression.
Early events of infection of MHV were studied in comparison with those of VSV, which is known to enter cells by an endocytic pathway. Treatment of mouse L-2 fibroblasts with ammonium chloride, chloroquine, or dansylcadaverine inhibited infection of MHV to a much lesser degree than that of VSV, suggesting a relatively minor role for the endocytic pathway and functional endosomes in MHV infection. Endocytosis of MHV and VSV into L-2 cells was assayed by the recovery of infectious (i.e., not uncoated) viruses from homogenates of cells harvested within the first few minutes of infection (and treated with protease to remove surface-bound virus). The results thus suggest that while a small proportion of the MHV inoculum is internalized by endocytosis, productive infection does not depend on functional endocytosis as utilized by VSV. Studies on direct virion-mediated cell fusion showed that MHV can induce fusion at pH 7.4, whereas VSV causes fusion at pH 5.0. Taken together, the above results suggest that MHV enters L-2 cells predominantly by membrane fusion with a non-acidified compartment such as the plasma membrane, endocytic vesicles, or endosomes (prior to their acidification). Results obtained from cell lines which differed in permissiveness to MHV infection suggested that the ability to support MHV infection does not correlate with endocytosis. Rather, nonpermissive cells, such as rat astrocytoma (C-6) and Vero cells, showed higher levels of recoverable internalized MHV than did fully permissive L-2 cells. Cells which are normally nonpermissive to MHV, could be rendered MHV-susceptible by PEG-induced fusion of cell surface-bound virus. Such PEG-mediated susceptibility to MHV infection was insensitive to inhibition by ammonium chloride, supporting the idea that host cell restriction of MHV infection in C-6 and Vero cells may be due to a block in nonendosomal membrane fusion. Thus endocytic internalization of MHV, which clearly occurs in a variety of cells, does not guarantee productive infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.