We have used a mRNA differential display technique to identify new genes involved in the reprogramming of gene expression during the adipose conversion of mouse 3T3 preadipocyte cell lines. We report here on the identification and cloning of a novel adipose-specific cDNA encoding a predicted membrane protein of 413 amino acids. The level of the corresponding 3.2-kilobase mRNA is tremendously increased during 3T3-L1 and 3T3-F442A differentiation into adipocytes. A single, very abundant 3.2-kilobase transcript is also found in inguinal and epididymal white adipose tissues and in interscapular brown adipose tissue but not in any other tissues examined. Its expression in adipose tissue is under tight nutritional regulation. The level of this novel 3.2-kilobase transcript becomes virtually nondetectable during fasting but is dramatically increased when fasted mice are refed a high carbohydrate diet. Based on its adipose specificity and dietary regulation, the novel gene product has been designated adiponutrin. The expression of adiponutrin mRNA is also 50-fold elevated in genetically obese fa/fa rats, indicating a link between adiponutrin and obesity. Western blot and confocal imagery analyses with epitope-tagged protein transiently expressed in 3T3-L1 adipocytes, and COS cells show that adiponutrin strictly localizes to membranes and is absent from the cytosol. Sequence analysis reveals homologies with several other members of related eukaryotic proteins, including a human paralog, which has been recently described in vesicular transport mechanisms. This leads us to suggest that adiponutrin could be involved in vesicular targeting and protein transport restricted to the adipocyte function.
The glycolytic enzyme enolase (EC 4.2.1.11) is active as dimers formed from three subunits encoded by different genes. The embryonic αα isoform remains distributed in many adult cell types, whereas a transition towards ββ and γγ isoforms occurs in striated muscle cells and neurons respectively. It is not understood why enolase exhibits tissue-specific isoforms with very close functional properties. We approached this problem by the purification of native ββ-enolase from mouse hindlimb muscles and by raising specific antibodies of high titre against this protein. These reagents have been useful in revealing a heterogeneity of the β-enolase subunit that changes with in i o and in itro maturation. A basic carboxypeptidase appears to be involved in generating an acidic β-enolase variant, and may regulate plasminogen binding by this subunit. We show for the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.