A subset of cancer-associated fibroblasts (FAP + /CAF-S1) mediates immunosuppression in breast cancers, but its heterogeneity and its impact on immunotherapy response remain unknown. Here, we identify 8 CAF-S1 clusters by analyzing more than 19,000 single CAF-S1 fibroblasts from breast cancer. We validate the five most abundant clusters by flow cytometry and in silico analyses in other cancer types, highlighting their relevance. Myofibroblasts from clusters 0 and 3, characterized by extracellular matrix proteins and TGFβ signaling, respectively, are indicative of primary resistance to immunotherapies. Cluster 0/ecm-myCAF upregulates PD-1 and CTLA4 protein levels in regulatory T lymphocytes (Tregs), which, in turn, increases CAF-S1 cluster 3/TGFβ-myCAF cellular content. Thus, our study highlights a positive feedback loop between specific CAF-S1 clusters and Tregs and uncovers their role in immunotherapy resistance. SIgnIFICAnCe:Our work provides a significant advance in characterizing and understanding FAP + CAF in cancer. We reached a high resolution at single-cell level, which enabled us to identify specific clusters associated with immunosuppression and immunotherapy resistance. Identification of cluster-specific signatures paves the way for therapeutic options in combination with immunotherapies.
Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.
After entering tissues, monocytes differentiate into cells that share functional features with either macrophages or dendritic cells (DCs). How monocyte fate is directed toward monocyte-derived macrophages (mo-Macs) or monocyte-derived DCs (mo-DCs) and which transcription factors control these differentiation pathways remains unknown. Using an in vitro culture model yielding human mo-DCs and mo-Macs closely resembling those found in vivo in ascites, we show that IRF4 and MAFB were critical regulators of monocyte differentiation into mo-DCs and mo-Macs, respectively. Activation of the aryl hydrocarbon receptor (AHR) promoted mo-DC differentiation through the induction of BLIMP-1, while impairing differentiation into mo-Macs. AhR deficiency also impaired the in vivo differentiation of mouse mo-DCs. Finally, AHR activation correlated with mo-DC infiltration in leprosy lesions. These results establish that mo-DCs and mo-Macs are controlled by distinct transcription factors and show that AHR acts as a molecular switch for monocyte fate specification in response to micro-environmental factors.
We have used a mRNA differential display technique to identify new genes involved in the reprogramming of gene expression during the adipose conversion of mouse 3T3 preadipocyte cell lines. We report here on the identification and cloning of a novel adipose-specific cDNA encoding a predicted membrane protein of 413 amino acids. The level of the corresponding 3.2-kilobase mRNA is tremendously increased during 3T3-L1 and 3T3-F442A differentiation into adipocytes. A single, very abundant 3.2-kilobase transcript is also found in inguinal and epididymal white adipose tissues and in interscapular brown adipose tissue but not in any other tissues examined. Its expression in adipose tissue is under tight nutritional regulation. The level of this novel 3.2-kilobase transcript becomes virtually nondetectable during fasting but is dramatically increased when fasted mice are refed a high carbohydrate diet. Based on its adipose specificity and dietary regulation, the novel gene product has been designated adiponutrin. The expression of adiponutrin mRNA is also 50-fold elevated in genetically obese fa/fa rats, indicating a link between adiponutrin and obesity. Western blot and confocal imagery analyses with epitope-tagged protein transiently expressed in 3T3-L1 adipocytes, and COS cells show that adiponutrin strictly localizes to membranes and is absent from the cytosol. Sequence analysis reveals homologies with several other members of related eukaryotic proteins, including a human paralog, which has been recently described in vesicular transport mechanisms. This leads us to suggest that adiponutrin could be involved in vesicular targeting and protein transport restricted to the adipocyte function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.