Humpback whales (Megaptera novaeangliae) were tracked from shore to determine habitat-use patterns in an area relatively undisturbed by human activity near the "Big Island" of Hawaii during the winter 1988 and 1989 calving seasons. The temporal and spatial distributions of whales differed with group size and composition. During afternoon hours, groups containing a calf occurred in water significantly shallower and nearer to shore than did groups without a calf. Late in the breeding season, the same segregation pattern occurred throughout the day. Between-groups distances were significantly greater for groups with a calf than distances between all other groups. The number of whales observed per hour peaked during mid-February, although the relative sighting rates for various group sizes and compositions varied across the breeding season. Adults without a calf may use deep water to facilitate breeding behavior, while maternal females may use shallower water to avoid harassment and injury to calves from sexually active males, turbulent offshore or deep sea conditions, or predators. The predominance of cows with a calf in coastal habitat increases their exposure to expanding human-related development and aquatic activities that could injure, disturb, or displace them.
Although humpback whale (Megaptera novaeangliae) calves are reported to vocalize, this has not been measurably verified. During March 2006, an underwater video camera and two-element hydrophone array were used to record nonsong vocalizations from a mother-calf escort off Hawaii. Acoustic data were analyzed; measured time delays between hydrophones provided bearings to 21 distinct vocalizations produced by the male calf. Signals were pulsed (71%), frequency modulated (19%), or amplitude modulated (10%). They were of simple structure, low frequency (mean=220 Hz), brief duration (mean=170 ms), and relatively narrow bandwidth (mean=2 kHz). The calf produced three series of "grunts" when approaching the diver. During winters of the years 2001-2005 in Hawaii, nonsong vocalizations were recorded in 109 (65%) of 169 groups with a calf using an underwater video and single (omnidirectional) hydrophone. Nonsong vocalizations were most common (34 of 39) in lone mother-calf pairs. A subsample from this dataset of 60 signals assessed to be vocalizations provided strong evidence that 10 male and 18 female calves vocalized based on statistical similarity to the 21 verified calf signals, proximity to an isolated calf (27 of 28 calves), strong signal-to-noise ratio, and/or bubble emissions coincident to sound.
The harbor porpoise (Phocoena phocoena (L., 1758)) used to be common in Puget Sound, Washington, but virtually disappeared from these waters by the 1970s. We conducted systematic aerial line-transect surveys (17 237 km total effort) for harbor porpoises, with the goal of estimating density and abundance in the inland waters of Washington State. Surveys in Puget Sound occurred throughout the year from 2013 to 2015, and in the Strait of Juan de Fuca and the San Juan Islands (and some adjacent Canadian waters) in April 2015. We used a high-wing, twin-engine Partenavia airplane and four observers (one on each side of the plane, one looking through a belly port, and one recording data). A total of 1063 harbor porpoise groups were sighted. Density and abundance were estimated using conventional distance sampling methods. Analyses were limited to 447 harbor porpoise groups observed during 5708 km of effort during good sighting conditions suitable for line-transect analysis. Harbor porpoises occurred in all regions of the study area, with highest densities around the San Juan Islands and in northern Puget Sound. Overall, estimated abundance for the Washington Inland Waters stock was 11 233 porpoises (CV = 37%, 95% CI = 9 616 – 13 120). This project clearly demonstrated that harbor porpoises have reoccupied waters of Puget Sound and are present there in all seasons. However, the specific reasons for their initial decline and subsequent recovery remain uncertain.
The Heard Island Feasibility Test source transmitted a hum at 209-220 dB re: 1 microPa at 175-m depth, centered on 57 Hz with a maximum bandwidth of 30 Hz for 1 h of every 3. Experienced marine mammal observers conducted line-transect surveys and monitored marine mammal behavior visually and acoustically in a 70 x 70 km square centered on the transmission site. Thirty-nine groups of cetaceans and 19 of pinnipeds were sighted from both vessels before the start of transmissions. Thirty-nine groups of cetaceans and 23 of pinnipeds were sighted during transmissions. Blue (Balaenoptera musculus), fin (B. physalus), and sperm (Physeter macrocephalus) whales were sighted during the base line period; blue, sperm, and possibly sei (B. borealis) whales were sighted during the transmission period. More schools of hourglass dolphins (Lagenorhynchus cruciger) were sighted during transmissions, but fewer groups of pilot whales (Globicephala melas), southern bottlenose whales (Hyperoodon planifrons), and minke whales (B. acutorostrata). The density of all cetaceans was 0.0157 groups/km2 before the transmissions and 0.0166 groups/km2 during. Antarctic fur seals (Arctocephalus gazella) and southern elephant seals (Mirounga leonina) were seen, but not in sufficient numbers to estimate abundance. One blue whale tracked before, during and after a transmission changed respiration and reorientation rates, but did not avoid the source detectably. Sperm whales and pilot whales were heard in 23% of 1181 min of baseline acoustic surveys; but in none of 1939 min during the transmission period. Both species were heard within 48 h after the end of the test.
Short-term behavioral responses of bowhead whales (Balaena mystzcetzs) and beluga whales (Delphinapteras leacas) to a Bell 2 12 helicopter and Twin Otter fixed-wing aircraft were observed opportunistically during four spring seasons (1989-1991 and 1994). Behaviors classified as reactions consisted of short surfacings, immediate dives or turns, changes in behavior state, vigorous swimming, and breaching.Aircraft sounds measured underwater at depths 3 m and 18 m showed that a Bell 212 helicopter was 7-17.5 dB noisier than a Twin Otter (10-500 Hz band). Bell 212 sound consisted mainly of main rotor tones ahead of the helicopter and tail rotor tones behind it. Twin Otter sound contained fewer prominent tones. Peak sound level as received underwater was inversely related to aircraft altitude, and received levels at 3 m depth averaged 2.5 dB higher than at 18 m depth. The dominant low-frequency components of aircraft sound are presumed to be readily audible to bowheads. For belugas, these components may be inaudible, or at most only weakly audible. Midfrequency sound components, visual cues, or both, are probably important in eliciting beluga reactions to aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.