Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called "priming." The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses that are induced following attack by either pathogens or insects or in response to abiotic stress. Although the phenomenon has been known for decades, most progress in our understanding of priming has been made over the past few years. Here, we summarize the current knowledge of priming in various induced-resistance phenomena in plants.
Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SArelated defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors.
Recognition of microbial patterns by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Peptidoglycans (PGNs) are major components of bacterial cell walls that possess immunity-stimulating activities in metazoans and plants. Here we show that PGN sensing and immunity to bacterial infection in Arabidopsis thaliana requires three lysin-motif (LysM) domain proteins. LYM1 and LYM3 are plasma membrane proteins that physically interact with PGNs and mediate Arabidopsis sensitivity to structurally different PGNs from Gram-negative and Gram-positive bacteria. lym1 and lym3 mutants lack PGN-induced changes in transcriptome activity patterns, but respond to fungus-derived chitin, a pattern structurally related to PGNs, in a wild-type manner. Notably, lym1, lym3, and lym3 lym1 mutant genotypes exhibit supersusceptibility to infection with virulent Pseudomonas syringae pathovar tomato DC3000. Defects in basal immunity in lym3 lym1 double mutants resemble those observed in lym1 and lym3 single mutants, suggesting that both proteins are part of the same recognition system. We further show that deletion of CERK1, a LysM receptor kinase that had previously been implicated in chitin perception and immunity to fungal infection in Arabidopsis, phenocopies defects observed in lym1 and lym3 mutants, such as peptidoglycan insensitivity and enhanced susceptibility to bacterial infection. Altogether, our findings suggest that plants share with metazoans the ability to recognize bacterial PGNs. However, as Arabidopsis LysM domain proteins LYM1, LYM3, and CERK1 form a PGN recognition system that is unrelated to metazoan PGN receptors, we propose that lineage-specific PGN perception systems have arisen through convergent evolution.
Plants are sessile organisms that are under constant attack from microbes. They rely on both preformed defenses, and their innate immune system to ward of the microbial pathogens. Preformed defences include for example the cell wall and cuticle, which act as physical barriers to microbial colonization. The plant immune system is composed of surveillance systems that perceive several general microbe elicitors, which allow plants to switch from growth and development into a defense mode, rejecting most potentially harmful microbes. The elicitors are essential structures for pathogen survival and are conserved among pathogens. The conserved microbe-specific molecules, referred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), are recognized by the plant innate immune systems pattern recognition receptors (PRRs). General elicitors like flagellin (Flg), elongation factor Tu (EF-Tu), peptidoglycan (PGN), lipopolysaccharides (LPS), Ax21 (Activator of XA21-mediated immunity in rice), fungal chitin, and β-glucans from oomycetes are recognized by plant surface localized PRRs. Several of the MAMPs and their corresponding PRRs have, in recent years, been identified. This review focuses on the current knowledge regarding important MAMPs from bacteria, fungi, and oomycetes, their structure, the plant PRRs that recognizes them, and how they induce MAMP-triggered immunity (MTI) in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.