The methyl-D-erythritol 4-phosphate pathway is responsible for the biosynthesis of a substantial number of natural compounds of biological and biotechnological importance. In recent years, this pathway has become an obvious target to develop new herbicides and antimicrobial drugs. In addition, the production of a variety of compounds of medical and agricultural interest may be possible through the genetic manipulation of this pathway. To this end, a complete understanding of the molecular mechanisms that regulate this pathway is of tremendous importance. Recent data have accumulated that show some of the multiple mechanisms that regulate the methyl-D-erythritol 4-phosphate pathway in plants. In this review we will describe some of these and discuss their implications. It has been demonstrated that 1-deoxy-D-xylulose-5-phosphate synthase (DXS), the first enzyme of this route, plays a major role in the overall regulation of the pathway. A small gene family codes for this enzyme in most of the plants which have been analysed so far, and the members of these gene families belong to different phylogenetic groups. Each of these genes exhibits a distinct expression pattern, suggesting unique functions. One of the most interesting regulatory mechanisms recently described for this pathway is the post-transcriptional regulation of the level of DXS and DXR proteins. In the case of DXS, this regulation appears conserved among plants, supporting its importance. The evidence accumulated suggests that this regulation might link the activity of this pathway with the plant's physiological conditions and the metabolic demand for the final products of this route.
Highlights d A global snapshot of protein organization in plants from deep proteomics profiling d Biochemical fractionation reveals stable protein complexes conserved across plants d Many observed complexes have previously only been inferred in plants by gene content d Known molecular modules are elaborated in plants with novel subunits and organization
Plant cells release ATP into their extracellular matrix as they grow, and extracellular ATP (eATP) can modulate the rate of cell growth in diverse tissues. Two closely related apyrases (APYs) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, function, in part, to control the concentration of eATP. The expression of APY1/APY2 can be inhibited by RNA interference, and this suppression leads to an increase in the concentration of eATP in the extracellular medium and severely reduces growth. To clarify how the suppression of APY1 and APY2 is linked to growth inhibition, the gene expression changes that occur in seedlings when apyrase expression is suppressed were assayed by microarray and quantitative real-time-PCR analyses. The most significant gene expression changes induced by APY suppression were in genes involved in biotic stress responses, which include those genes regulating wall composition and extensibility. These expression changes predicted specific chemical changes in the walls of mutant seedlings, and two of these changes, wall lignification and decreased methyl ester bonds, were verified by direct analyses. Taken together, the results are consistent with the hypothesis that APY1, APY2, and eATP play important roles in the signaling steps that link biotic stresses to plant defense responses and growth changes.
Analysis of an expressed sequence tag library with more than 5,000 sequences from spores of the fern Ceratopteris richardii reveals that more than 3,900 of them represent distinct genes, and almost 70% of these have significant similarity to Arabidopsis (Arabidopsis thaliana) genes. Eight genes are common between three very different dormant plant systems, Ceratopteris spores, Arabidopsis seeds, and Arabidopsis pollen. We evaluated the pattern of mRNA abundance over the first 48 h of spore development using a microarray of cDNAs representing 3,207 distinct genes of C. richardii and determined the relative levels of RNA abundance for 3,143 of these genes using a Bayesian method of statistical analysis. More than 900 of them (29%) show a significant change between any of the five time points analyzed, and these have been annotated based on their sequence similarity with the Arabidopsis proteome. Novel data arising from these analyses identify genes likely to be critical for the germination and subsequent early development of diverse cells and tissues emerging from dormancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.