Ba1.6Ca2.3Y1.1Fe5O13 is an Fe3+ oxide adopting a complex perovskite superstructure, which is an ordered intergrowth between the Ca2Fe2O5 and YBa2Fe3O8 structures featuring octahedral, square pyramidal, and tetrahedral B sites and three distinct A site environments. The distribution of A site cations was evaluated by combined neutron and X-ray powder diffraction. Consistent with the Fe3+ charge state, the material is an antiferromagnetic insulator with a Néel temperature of 480−485 °C and has a relatively low d.c. conductivity of 2.06 S cm−1 at 700 °C. The observed area specific resistance in symmetrical cell cathodes with the samarium-doped ceria electrolyte is 0.87 Ω cm2 at 700 °C, consistent with the square pyramidal Fe3+ layer favoring oxide ion formation and mobility in the oxygen reduction reaction. Density functional theory calculations reveal factors favoring the observed cation ordering and its influence on the electronic structure, in particular the frontier occupied and unoccupied electronic states.
We report the exfoliation of layered Na2Ti3O7, a promising anode material for Na-ion batteries, and restacking using HNO3 and NaOH to form H-[Ti3O7] and Na(x)-[Ti3O7] compositions, respectively. The materials were characterised by a range of techniques (SEM, TEM, solid-state NMR, XRD, PDF). Although the formation of aggregated nanoparticles is favoured under acidic restacking conditions, the use of basic conditions can lead to control over the adherence between the exfoliated layers. Pair distribution function (PDF) analysis confirms that the local TiO6 connectivity of the pristine material is maintained. The lowest sodium-containing Na(1)-[Ti3O7] phase, which is the stable product upon Na + leaching after consecutive washing steps, displays the best performance among the compositions studied, affording a stable reversible capacity of about 200 mAh.g -1 for 20 cycles at a C/20 rate. Washing removes the excess of 'free/reactive' Na + , which otherwise forms inactive Na2CO3 in the insufficiently-washed compositions.
Complex
transition-metal oxides are important functional materials
in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed
by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of
chemically mismatched octahedral cations into a cubic perovskite oxide
parent phase modifies structure and composition beyond the unit cell
length scale on the B sublattice alone. This affords an endotaxial
nanocomposite of two cubic perovskite phases with distinct properties.
These locally B-site cation-ordered and -disordered phases share a
single AO3 network and have enhanced stability against
the formation of a competing hexagonal structure over the single-phase
parent. Synergic integration of the distinct properties of these phases
by the coherent interfaces of the composite produces solid oxide fuel
cell cathode performance superior to that expected from the component
phases in isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.