Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3–13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage.
Meditation practices, originated from ancient traditions, have increasingly received attention due to their potential benefits to mental and physical health. The scientific community invests efforts into scrutinizing and quantifying the effects of these practices, especially on the brain. There are methodological challenges in describing the neural correlates of the subjective experience of meditation. We noticed, however, that technical considerations on signal processing also don't follow standardized approaches, which may hinder generalizations. Therefore, in this article, we discuss the usage of the electroencephalogram (EEG) as a tool to study meditation experiences in healthy individuals. We describe the main EEG signal processing techniques and how they have been translated to the meditation field until April 2020. Moreover, we examine in detail the limitations/assumptions of these techniques and highlight some good practices, further discussing how technical specifications may impact the interpretation of the outcomes. By shedding light on technical features, this article contributes to more rigorous approaches to evaluate the construct of meditation.
Understanding decision‐making in complex and dynamic environments is relevant for designing strategies targeting safety improvements and error rate reductions. However, studies evaluating brain dynamics in realistic situations are scarce in the literature. Given the evidence that specific microstates may be associated with perception and attention, in this work we explored for the first time the application of the microstate model in an ecological, dynamic and complex scenario. More specifically, we evaluated elite helicopter pilots during engine‐failure missions in the vicinity of the so called “dead man's curve,” which establishes the operational limits for a safe landing after the execution of a recovery maneuver (autorotation). Pilots from the Brazilian Air Force flew a AS‐350 helicopter in a certified aerodrome and physiological sensor data were synchronized with the aircraft's flight test instrumentation. We assessed these neural correlates during maneuver execution, by comparing their modulations and source reconstructed activity with baseline epochs before and after flights. We show that the topographies of our microstate templates with 4, 5, and 6 classes resemble the literature, and that a distinct modulation characterizes decision‐making intervals. Moreover, the source reconstruction result points to a differential activity in the medial prefrontal cortex, which is associated to emotional regulation circuits in the brain. Our results suggest that microstates are promising neural correlates to evaluate realistic situations, even in a challenging and intrinsically noisy environment. Furthermore, it strengthens their usage and expands their application for studying cognition under more realistic conditions.
In recent years, our group and others have reported multiple cases of consistent neurological recovery in people with spinal cord injury (SCI) following a protocol that integrates locomotion training with brain machine interfaces (BMI). The primary objective of this pilot study was to compare the neurological outcomes (motor, tactile, nociception, proprioception, and vibration) in both an intensive assisted locomotion training (LOC) and a neurorehabilitation protocol integrating assisted locomotion with a noninvasive brain–machine interface (L + BMI), virtual reality, and tactile feedback. We also investigated whether individuals with chronic-complete SCI could learn to perform leg motor imagery. We ran a parallel two-arm randomized pilot study; the experiments took place in São Paulo, Brazil. Eight adults sensorimotor-complete (AIS A) (all male) with chronic (> 6 months) traumatic spinal SCI participated in the protocol that was organized in two blocks of 14 weeks of training and an 8-week follow-up. The participants were allocated to either the LOC group (n = 4) or L + BMI group (n = 4) using block randomization (blinded outcome assessment). We show three important results: (i) locomotion training alone can induce some level of neurological recovery in sensorimotor-complete SCI, and (ii) the recovery rate is enhanced when such locomotion training is associated with BMI and tactile feedback (∆Mean Lower Extremity Motor score improvement for LOC = + 2.5, L + B = + 3.5; ∆Pinprick score: LOC = + 3.75, L + B = + 4.75 and ∆Tactile score LOC = + 4.75, L + B = + 9.5). (iii) Furthermore, we report that the BMI classifier accuracy was significantly above the chance level for all participants in L + B group. Our study shows potential for sensory and motor improvement in individuals with chronic complete SCI following a protocol with BMIs and locomotion therapy. We report no dropouts nor adverse events in both subgroups participating in the study, opening the possibility for a more definitive clinical trial with a larger cohort of people with SCI.Trial registration: http://www.ensaiosclinicos.gov.br/ identifier RBR-2pb8gq.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.