This study demonstrates the effect of a single high-intensity interval training (HIIT) session on the redox status of rat ovaries with excess adiposity. Forty Wistar female rats (mean (±s.e.m.) weight 94.40 ± 13.40 g) were divided into two groups and fed either a standard diet (SD) or a high-fat diet (HFD) for 62 days. At the end of this period, the rats were subjected to a single HIIT session and were killed 24 h after exercise. Both groups subjected to exercise (SDex and HFDex) generated a significantly higher antioxidant environment by presenting a higher thiol content, which represents a lower oxidation rate of GSH than their respective controls (SD and HFD). The percentage of morphologically normal primary follicles decreased, whereas that of antral follicles increased, in the SDex group. In addition, the HFD group had a higher percentage of degenerated antral follicles than the SD and SDex groups. Cells immunoreactive for α-smooth muscle actin were seen in the cortical stroma and thecal layer enclosing late secondary and tertiary follicles in all groups. Moreover, heme oxygenase and cytochrome P450 family 19 subfamily A member 1 (Cyp19A1) labelling was seen in all antral follicles. Progesterone concentrations were significantly higher in the HFDex than SDex group. In conclusion, this study indicates that a single session of HIIT may result in an improvement in ovary redox status because of metabolic muscle activity by inducing physiological adaptation after exercise in a paracrine manner.
microRNAs (miRNAs) are recognized as diabetes mellitus type 2 (T2DM) biomarkers useful for disease metabolism comprehension and have great potential as therapeutics targets. BDNF and IGF1 increased expression are highly involved in the benefits of insulin and glucose paths, however, they are down-regulated in insulin resistance conditions, while their expression increase is correlated to the improvement of glucose and insulin metabolism. Studies suggest the microRNA regulation of these genes in several different contexts, providing a novel investigation approach for comprehending T2DM metabolism and revealing potential therapeutic targets. In the present study, we investigate in different animal models (human, rat, and mouse) miRNAs that target BDNF and IGF1 in skeletal muscle tissue with T2DM physiological conditions. Bioinformatics tools and databases were used to miRNA prediction, molecular homology, experimental validation of interactions, expression in the studied physiological condition, and network interaction. The findings showed three miRNAs candidates for IGF1(miR-29a, miR-29b, and miR-29c) and one for BDNF (miR-206). The experimental evaluations and the search for the expression in skeletal muscle from T2DM subjects confirmed the predicted interaction between miRNA-mRNA for miR-29b and miR-206 through human, rat, and mouse models. This interaction was reaffirmed in multiple network analyses. In conclusion, our results show the regulation relationship between miR-29b and miR-206 with the investigated genes, in several tissues, suggesting an inhibition pattern. Nevertheless, these data show a large number of possible interaction physiological processes, for future biotechnological prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.