Breastfeeding can be a vital way of acquiring passive immunity via the transfer of antibodies from the mother to the breastfeeding infant. Recent evidence points to the fact that human milk contains immunoglobulins (Ig) against the SARS-CoV-2 virus, either after natural infection or vaccination, but whether these antibodies can resist enzymatic degradation during digestion in the infant gastrointestinal (GI) tract or indeed protect the consumers remains inconclusive. Herein, we evaluated the levels of IgG, IgA, and secretory IgA (SIgA) antibodies against the spike protein of SARS-CoV-2 in 43 lactating mothers who received at least two doses of either an mRNA-based vaccine (Pfizer/BioNTech, Moderna; n = 34) or an adenovirus-based vaccine (AstraZeneca; n = 9). We also accessed the potential persistence of SARS-CoV-2 IgA, IgG, and secretory IgA (SIgA) antibodies from vaccinated women in the GI tract of the infants by means of a static in vitro digestion protocol. Our data depict that, although slightly reduced, the IgA antibodies produced after vaccination resist both the gastric and intestinal phases of infant digestion, whereas the IgGs are more prone to degradation in both phases of digestion. Additionally, SIgA antibodies were found to greatly resist the gastric phase of digestion albeit showing some reduction during the intestinal phase. The evaluation of the vaccine induced Ig profile of breastmilk, and the extent to which these antibodies can resist digestion in the infant GI tract provide important information about the potential protective role of this form of passive immunity that could help decision making during the COVID-19 pandemic and beyond.
Colorectal cancer (CRC) is the third most frequent human cancer with over 1.3 million new cases globally. CRC is a complex disease caused by interactions between genetic and environmental factors; in particular, high consumption of red meat, including beef, is considered a risk factor for CRC initiation and progression. Recent data demonstrate that exogenous microRNAs (miRNAs) entering the body via ingestion could pose an effect on the consumer. In this study, we focused on bovine miRNAs that do not share a seed sequence with humans and mice. We identified bta‐miR‐154c, a bovine miRNA found in edible parts of beef and predicted via cross‐species bioinformatic analysis to affect cancer‐related pathways in human cells. When bovine tissue was subjected to cooking and a simulation of human digestion, bta‐miR‐154c was still detected after all procedures, albeit at reduced concentrations. However, lipofection of bta‐miR‐154c in three different colorectal human cell lines did not affect their viability as evaluated at various time points and concentrations. These data indicate that bta‐miR‐154c (a) may affect cancer‐related pathways in human cells, (b) can withstand digestion and be detected after all stages of an in vitro digestion protocol, but (c) it does not appear to alter epithelial cell viability after entering human enterocytes, even at supraphysiological amounts. Further experiments will elucidate whether bta‐miR‐154c exerts a different functional effect on the human gut epithelium, which may cause it to contribute to CRC progression through its consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.