To improve the energy performance of restored cultural heritage buildings, it is necessary to know the real values of thermal conductivity of its envelope, mainly of the facades, and to study an intervention strategy that does not interfere with the preservation of their cultural and architectural values. The brick walls with which a large number of these buildings were constructed, usually absorb water, leading to their deterioration, whereas the heat transmission through them is much higher (than when they are dry). This aspect is often not taken into account when making interventions to improve the energy efficiency of these buildings, which makes them ineffective. This article presents the results of an investigation that analyzes thermal behavior buildings of the early 20th century in the city of Zamora, Spain. It has been concluded that avoiding moisture in brick walls not only prevents its deterioration but represents a significant energy saving, especially in buildings that have porous brick masonry walls and with significant thicknesses.
Abstract:Interventions in historic brick buildings require an exhaustive analysis of the current characteristics of bricks in order to establish the role performed by these elements in the buildings. This study presents the results of an experimental analysis of the compressive strength of brick specimens extracted from different buildings built in the 19th and 20th centuries in the province of Zamora (Spain). The study analyses specimens with very different characteristics to compare results from different masonry units and manufacturing processes. Specimens are classified into four groups according to their macroscopic and microscopic analyses. Compressive strength results are correlated to the above classification and to the results of density, absorption and open porosity of the samples. The compressive strength results present high variation between clay bricks (9.2-64.4 N/mm 2 ) and between samples extracted from the same brick due to the heterogeneity of the material. Correlations between compressive strength and open porosity, absorption and dry density values are observed, with less dispersion in the case of high sintering level, up to 1000 • C. Finally, the compliance with the current Spanish Technical Building Code with respect to their compressive strength is checked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.