Depth estimation has been an essential task for many computer vision applications, especially in autonomous driving, where safety is paramount. Depth can be estimated not only with traditional supervised learning but also via a self-supervised approach that relies on camera motion and does not require ground truth depth maps. Recently, major improvements have been introduced to make self-supervised depth prediction more precise. However, most existing approaches still focus on single-frame depth estimation, even in the self-supervised setting. Since most methods can operate with frame sequences, we believe that the quality of current models can be significantly improved with the help of information about previous frames. In this work, we study different ways of integrating recurrent blocks and attention mechanisms into a common self-supervised depth estimation pipeline. We propose a set of modifications that utilize temporal information from previous frames and provide new neural network architectures for monocular depth estimation in a self-supervised manner. Our experiments on the KITTI dataset show that proposed modifications can be an effective tool for exploiting temporal information in a depth prediction pipeline.
Probabilistic topic modeling is a tool for statistical text analysis that can give us information about the inner structure of a large corpus of documents. The most popular models—Probabilistic Latent Semantic Analysis and Latent Dirichlet Allocation—produce topics in a form of discrete distributions over the set of all words of the corpus. They build topics using an iterative algorithm that starts from some random initialization and optimizes a loss function. One of the main problems of topic modeling is sensitivity to random initialization that means producing significantly different solutions from different initial points. Several studies showed that side information about documents may improve the overall quality of a topic model. In this paper, we consider the use of additional information in the context of the stability problem. We represent auxiliary information as an additional modality and use BigARTM library in order to perform experiments on several text collections. We show that using side information as an additional modality improves topics stability without significant quality loss of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.