Probabilistic topic modeling is a tool for statistical text analysis that can give us information about the inner structure of a large corpus of documents. The most popular models—Probabilistic Latent Semantic Analysis and Latent Dirichlet Allocation—produce topics in a form of discrete distributions over the set of all words of the corpus. They build topics using an iterative algorithm that starts from some random initialization and optimizes a loss function. One of the main problems of topic modeling is sensitivity to random initialization that means producing significantly different solutions from different initial points. Several studies showed that side information about documents may improve the overall quality of a topic model. In this paper, we consider the use of additional information in the context of the stability problem. We represent auxiliary information as an additional modality and use BigARTM library in order to perform experiments on several text collections. We show that using side information as an additional modality improves topics stability without significant quality loss of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.