Abstract-This paper investigates the fault behaviour of inverter-interfaced distributed generators in stand-alone networks. It is shown that the rapid transient response of the inverter control system allows its fault behaviour to be characterised by quasi steady-state equivalent fault models. The choice of inverter control strategy, control reference frame and the method of active current limiting dominate the fault response, especially in case of unbalanced faults. The proposed fault models can be directly incorporated in conventional fault analysis methods of which an example is given for a faulty islanded microgrid. Model validation is carried out by comparing experimental measurements with results of analytical fault analysis using the developed fault models and PSCAD time domain simulations.
Residential electricity demand is expected to rise in the next few decades due to the electrification of heating and transport. Both European and UK national policies suggest that efforts should be made to reduce carbon emissions and increase the share of renewable energy, an important element of which is encouraging generation, typically PV, in partnership with energy storage systems in the residential sector. The scale of the energy storage system is important, i.e. in individual properties or as a community resource. Many advantages of community energy storage (CES) over household energy storage (HES) have been identified, but the design and operation of CES has received significantly less attention. Most existing research has analysed CES at community level only, but the performance and impact on individual households has yet to be fully explored. In this study an agent-based model is proposed to investigate and analyse CES based on a range of criteria. Results indicate that both HES and CES can significantly reduce the grid peak power import and export, improve the community self-consumption rate (SCR) and self-sufficiency rate (SSR), and contribute to much higher energy saving. Furthermore, optimising the CES capacity leads to more effective use of PV power and better demand localisation during high PV-generation periods. It is found that an important challenge for CES systems is to realise the value of the shared electricity equitably amongst the participants and potentially to seek other revenue streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.