Metronomic chemotherapy refers to the minimum biologically effective doses of a chemotherapy agent given as a continuous regimen without extended rest periods. Drug repurposing is defined as the use of an already known drug for a new medical indication, different from the original one. In oncology the combination of these two therapeutic approaches is called "Metronomics". The aim of this work is to evaluate the therapeutic effect of cyclophosphamide in a metronomic schedule in combination with the repurposed drug losartan in two genetically different mice models of triple negative breast cancer. Our findings showed that adding losartan to metronomic cyclophosphamide significantly improved the therapeutic outcome. In both models the combined treatment increased the mice's survival without sings of toxicity. Moreover, we elucidated some of the mechanisms of action involved, which include a decrease of intratumor hypoxia, stimulation of the immune response and remodeling of the tumor microenvironment. The remarkable therapeutic effect, the lack of toxicity, the low cost of the drugs and its oral administration, strongly suggest its translation to the clinical setting in the near future.
Aim: To characterize, by means of univariate and multivariate approaches, the T helper (Th)-1 and Th-2 responses during the different phases of tumor immunoediting. Materials & methods: We used a multivariate principal component analysis applied to analyze the joint behavior of serum concentrations of IFN-γ, IL-2, IL-10 and IL-4, during the different phases of tumor immunoediting, in CBi/L mice challenged with M-406 mammary adenocarcinoma. Results & conclusion: Animals in equilibrium phase showed the widest variations in values of the four cytokines. In this experimental model, the role of IFN-γ would be related to tumor growth and progression, while IL-10 would participate in the antitumor immune response.
We previously reported that, in cultured hepatocytes, mitochondrial aquaporin-8 (AQP8) channels facilitate the conversion of ammonia to urea and that the expression of human AQP8 (hAQP8) enhances ammonia-derived ureagenesis. In this study, we evaluated whether hepatic gene transfer of hAQP8 improves detoxification of ammonia to urea in normal mice as well as in mice with impaired hepatocyte ammonia metabolism. A recombinant adenoviral (Ad) vector encoding hAQP8, AdhAQP8, or a control Ad vector was administered via retrograde infusion into the bile duct of the mice. Hepatocyte mitochondrial expression of hAQP8 was confirmed using confocal immunofluorescence and immunoblotting. The normal hAQP8-transduced mice showed decreased plasma ammonia and increased liver urea. Enhanced ureagenesis was confirmed via the NMR studies assessing the synthesis of 15N-labeled urea from 15N-labeled ammonia. In separate experiments, we made use of the model hepatotoxic agent, thioacetamide, to induce defective hepatic metabolism of ammonia in mice. The adenovirus-mediated mitochondrial expression of hAQP8 was able to restore normal ammonemia and ureagenesis in the liver of the mice. Our data suggest that hAQP8 gene transfer to mouse liver improves detoxification of ammonia to urea. This finding could help better understand and treat disorders with defective hepatic ammonia metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.