Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly in Manaus, the capital of Amazonas state in northern Brazil. The attack rate there is an estimate of the final size of the largely unmitigated epidemic that occurred in Manaus. We use a convenience sample of blood donors to show that by June 2020, 1 month after the epidemic peak in Manaus, 44% of the population had detectable immunoglobulin G (IgG) antibodies. Correcting for cases without a detectable antibody response and for antibody waning, we estimate a 66% attack rate in June, rising to 76% in October. This is higher than in São Paulo, in southeastern Brazil, where the estimated attack rate in October was 29%. These results confirm that when poorly controlled, COVID-19 can infect a large proportion of the population, causing high mortality.
OVID-19 is a severe acute respiratory infection (SARI) that emerged in early December 2019 in Wuhan, China 1. The outbreak was declared a public health emergency of international concern by the World Health Organization on 30 January 2020. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped, single-stranded positive-sense RNA virus that belongs to the Betacoronavirus genus and Coronaviridae family 2. SARS-CoV-2 is closely related genetically to bat-derived SARS-like coronaviruses 3. Human-to-human transmission occurs primarily via respiratory droplets and direct contact, similar to human influenza viruses, SARS-CoV and Middle East respiratory syndrome coronavirus 4. The most commonly reported clinical symptoms are fever, dry cough, fatigue, dyspnoea, anosmia, ageusia, or some combination of these 1,4,5. As of 16 June 2020, more than 7.9 million cases have been confirmed worldwide, resulting in 434,796 deaths 6. Brazil declared COVID-19 a national public health emergency on 3 February 2020 7. After the development of a national emergency plan and the early establishment of molecular diagnostic facilities across Brazil's network of public health laboratories, the country reported its first confirmed COVID-19 case on 25 February 2020, in a traveller returning to São Paulo from northern Italy 8. São Paulo is the largest city in South America and no other Brazilian city receives a greater proportion of international flights 9. Currently, Brazil has one of the fastest-growing COVID-19 epidemics in the world, now accounting for 1,864,681 cases and 72,100 deaths, comprising over 55% of the total number of reported cases in Latin America and the Caribbean (as of 14 July 2020) 6. About 21% of Latin American and Caribbean populations are estimated to be at risk of severe COVID-19 illness 10. The region has been experiencing large outbreaks, with growing epidemics in Brazil,
The herd immunity threshold is the proportion of a population that must be immune to an infectious disease, either by natural infection or vaccination such that, in the absence of additional preventative measures, new cases decline and the effective reproduction number falls below unity. This fundamental epidemiological parameter is still unknown for the recently-emerged COVID-19, and mathematical models have predicted very divergent results. Population studies using antibody testing to infer total cumulative infections can provide empirical evidence of the level of population immunity in severely affected areas. Here we show that the transmission of SARS-CoV-2 in Manaus, located in the Brazilian Amazon, increased quickly during March and April and declined more slowly from May to September. In June, one month following the epidemic peak, 44% of the population was seropositive for SARS-CoV-2, equating to a cumulative incidence of 52%, after correcting for the false-negative rate of the antibody test. The seroprevalence fell in July and August due to antibody waning. After correcting for this, we estimate a final epidemic size of 66%. Although non-pharmaceutical interventions, plus a change in population behavior, may have helped to limit SARS-CoV-2 transmission in Manaus, the unusually high infection rate suggests that herd immunity played a significant role in determining the size of the epidemic.
Aim: Measuring avian migration can prove challenging given the spatial scope and the diversity of species involved. No one monitoring technique provides all the pertinent measures needed to capture this macroscale phenomenon -emphasizing the need for data integration. Migration phenology is a key metric characterizing large-scale migration dynamics and has been successfully quantified using weather surveillance radar (WSR) data and community science observations. Separately, both platforms have their limitations and measure different aspects of bird migration. We sought to make a formal comparison of the migration phenology estimates derived from WSR and eBird data -of which we predict a positive correlation.Location: Contiguous United States.
In this study, we combined a machine learning pipeline and human supervision to identify and label swallow and martin roost locations on data captured from 2000 to 2020 by 12 Weather Surveillance Radars in the Great Lakes region of the US. We employed radar theory to extract the number of birds in each roost detected by our technique. With these data, we set out to investigate whether roosts formed consistently in the same geographic area over two decades and whether consistency was also predictive of roost size. We used a clustering algorithm to group individual roost locations into 104 high‐density regions and extracted the number of years when each of these regions was used by birds to roost. In addition, we calculated the overall population size and analyzed the daily roost size distributions. Our results support the hypothesis that more persistent roosts are also gathering more birds, but we found that on average, most individuals congregate in roosts of smaller size. Given the concentrations and consistency of roosting of swallows and martins in specific areas throughout the Great Lakes, future changes in these patterns should be monitored because they may have important ecosystem and conservation implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.