Versión / Versió:Preprint
Conflict of Interest (COI) StatementThe authors of the present manuscript declare no conflict of interest.
AbstractDue to its capital role in drug seeking, consumption and addictive behaviour there is a growing interest in identifying the neural circuits and molecular mechanisms underlying the formation, maintenance and retrieval of drug related memories. Human studies focused on neuronal systems that store and control drug-conditioned memories have found cerebellar activations during the retrieval of drug-associated cues memory. However, at the preclinical level, almost no attention has been paid to a possible role of the cerebellum in drug-related memories. In the present study, we ought to fill this gap by aiming to investigate the pattern of neuronal activation (as revealed by cFos expression) in different regions of the prefrontal cortex and cerebellum of mice trained to develop conditioned preference for an olfactory stimulus (CS+) paired with cocaine.Our results indicate that CS+ preference was directly associated with cFos expression in cells at the apical region of the granule cell layer of the cerebellar vermis, this relationship being more prominent in some specific lobules. Conversely, cFos+ immunostaining in other cerebellar regions seems unrelated to CS+ preference but to other aspects of the conditioning procedure. At the prefrontal cortex, cFos expression seemed to be related to cocaine administration rather than to its ability to establish conditioned preference. The present results suggest that as it has been observed in some clinical studies, the cerebellum might be an important and largely overlooked part of the neural circuits involved in generating, maintaining and/or retrieving drug memories.
Despite the fact that several data have supported the involvement of the cerebellum in the functional alterations observed after prolonged cocaine use, this brain structure has been traditionally ignored and excluded from the circuitry affected by addictive drugs. In the present study, we investigated the effects of a chronic cocaine treatment on molecular and structural plasticity in the cerebellum, including BDNF, D3 dopamine receptors, ΔFosB, the Glu2 AMPA receptor subunit, structural modifications in Purkinje neurons and, finally, the evaluation of perineuronal nets (PNNs) in the projection neurons of the medial nucleus, the output of the cerebellar vermis. In the current experimental conditions in which repeated cocaine treatment was followed by a 1‐week withdrawal period and a new cocaine challenge, our results showed that cocaine induced a large increase in cerebellar proBDNF levels and its expression in Purkinje neurons, with the mature BDNF expression remaining unchanged. Together with this, cocaine‐treated mice exhibited a substantial enhancement of D3 receptor levels. Both ΔFosB and AMPA receptor Glu2 subunit expressions were enhanced in cocaine‐treated animals. Significant pruning in Purkinje dendrite arborization and reduction in the size and density of Purkinje boutons contacting deep cerebellar projection neurons accompanied cocaine‐dependent increase in proBDNF. Cocaine‐associated effects point to the inhibitory Purkinje function impairment, as was evidenced by lower activity in these cells. Moreover, the probability of any remodelling in Purkinje synapses appears to be decreased due to an upregulation of extracellular matrix components in the PNNs surrounding the medial nuclear neurons.
Drug‐induced Pavlovian memories are thought to be crucial for drug addiction because they guide behaviour towards environments with drug availability. Drug‐related memory depends on persistent changes in dopamine‐glutamate interactions in the medial prefrontal cortex (mPFC), basolateral amygdala, nucleus accumbens core and hippocampus. Recent evidence from our laboratory indicated that the cerebellum is also a relevant node for drug‐cue associations. In the present study, we tested the role that specific regions of the cerebellum and mPFC play in the acquisition of cocaine‐induced preference conditioning. Quinolinic acid was used to manage a permanent deactivation of lobule VIII in the vermis prior to conditioning. Additionally, lidocaine was infused into the prelimbic and infralimbic (IL) cortices for reversible deactivation before every training session. The present findings show, for the first time, that the cerebellum and mPFC might act together in order to acquire drug‐cue Pavlovian associations. Either a dorsal lesion in lobule VIII or an IL deactivation encouraged cocaine‐induced preference conditioning. Moreover, simultaneous IL‐cerebellar deactivation prevented the effect of either of the separate deactivations. Therefore, similar to the IL cortex, neural activity in the cerebellum may be crucial for ensuring inhibitory control of the expression of cocaine‐related memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.