Parallel studies of the preparation of Re and (99m)Tc agents aid in interpreting the nature of tracer (99m)Tc radiopharmaceuticals. Aqueous solutions of the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) cation are gaining wide use and are readily prepared, but such solutions of the fac-[Re(CO)(3)(H(2)O)(3)](+) cation (1) are not so easily accessible. Herein we describe a new, reliable, and straightforward preparation of aqueous solutions of 1, characterized by HPLC and ESI-MS. Treatment of solutions of 1 with thioether-bearing amino acids, AAH = S-methyl-l-cysteine (MECYSH), S-propyl-l-cysteine (PRCYSH), and methionine (METH), gave high yields of fac-Re(CO)(3)AA complexes. X-ray crystallographic and NMR analyses indicated that MECYS(-), PRCYS(-), and MET(-) were bound in fac-Re(CO)(3)AA complexes as tridentate monoanionic ligands through amino, thioether, and alpha-carboxyl groups. In CD(3)OD, (1)H NMR spectra have broad signals but have two sets of signals at -10 degrees C, consistent with two isomers with different configurations at the pyramidal sulfur; these interconvert slowly on the NMR time scale at low temperatures. Indeed, the crystal structure of the fac-Re(CO)(3)(PRCYS) reveals a mixture of the two possible diastereoisomers. S-(Carboxymethyl)-l-cysteine (CCMH(2)) and 1 gave two products, 5A (kinetically favored) and 5B (thermodynamically favored). X-ray crystallographic analyses of a crystal of 5B and of a 1:1 cocrystal of 5A and 5B showed that 5A and 5B are diastereoisomers with the CCMH(-) alpha-carboxyl group dangling. In addition to the amino and thioether groups, the S-(carboxymethyl) carboxyl group is coordinated, a feature that slows interconversion of diastereoisomers relative to the other fac-Re(CO)(3)AA complexes because interconversion can now occur only after the rupture of Re-ligand bonds. These N, O, and S tridentate adducts are quite stable, and the grouping has promise in (99m)Tc(CO)(3) tracer development.
Coordinated N,N',N"-trimethyldiethylenetriamine (Me3dien) has several possible configurations: two have mirror symmetry (R,S configurations at the terminal nitrogens) and the terminal N-Me's anti or syn with respect to the central N-Me (anti-(R,S) and syn-(R,S) isomers, respectively), and two are nonsymmetrical (R,R and S,S configurations at terminal nitrogens, rac denotes a 1:1 mixture of the two isomers). For each configuration, two Me3dienPtG atropisomers can be formed (anti or syn orientation of central N-Me and G 06, G = guanine derivative), and these can be observed since the terminal N-Me's decrease the rate of G rotation about the Pt-N7 bond. In symmetrical syn-(R,S)-Me3dienPtG derivatives with G = 9-EtG and 3'-GMP, the anti rotamer, which can form O6-NH H-bonds, was slightly favored over the syn rotamer but never more than 2:1. This anti rotamer is also favored by lower steric repulsion between the terminal N-Me's and G O6; thus, the contribution of O6-NH H-bonding to the stability of the anti rotamer could be rather small. With G = 5'-GMP, an O6-NH H-bond in the anti rotamer and a phosphate-NH H-bond in the syn rotamer can form. Only the syn rotamer was detected in solution, indicating that NH H-bonds to 5'-phosphate are far more important than to O6, particularly since steric factors favor the anti rotamer. Interconversion between rotamers was faster for syn-(R,S)- than for rac-Me3dien derivatives. This appears to be determined by a smaller steric impediment to G rotation of two "quasi equatorial" N-Me's, both on one side of the platinum coordination plane (syn-(R,S) isomer), than one "quasi equatorial" and one "quasi axial" N-Me on either side of the coordination plane (rac isomer).
Complexes of the type syn-(R,S)-Me(3)dienPtL (Me(3)dien = N,N',N' '-trimethyldiethylenetriamine; L = guanine or hypoxanthine derivative) have two rotamers, a feature useful for assessing hydrogen-bond interactions between a Me(3)dien NH group and either the O6 or the phosphate group of the coordinated L. The two rotamers are defined as endo and exo for the rotamer with the six-membered ring of the purine on the same side and on the opposite side, respectively, of the coordination plane as the N-Me's. For L = 5'-GMP and 5'-IMP the endo rotamer is the exclusive form (at neutral and basic pH) or is present at 90% and more (low pH where 5'-phosphate group is protonated). A 5'-phosphate group can be positioned to form a direct H-bond with a Me(3)dien NH group only in the endo form; such an H-bond explains this high endo preference. Such a direct phosphate-NH H-bond is not possible for other complexes used in this study because either L has no phosphate group (9-EtG, Guo) or the phosphate is at the 3'-position (3'-GMP and 3'-IMP), too far for H-bonding. Nevertheless, a preference for the endo rotamer was observed for these L also. This result is opposite to that expected both from potential steric repulsion of the L O6 with the N-Me groups and also from the lack of a potential favorable H-bond interaction between L O6 and a Me(3)dien NH. For the 9-EtG adduct, the temperature dependence of the endo/exo equilibrium and the activation parameters for endo/exo interconversion suggest that the preference for the endo rotamer arises from the hydration of the Me(3)dien NH groups; such hydration is favorable in the endo rotamer. At basic pH, N1H deprotonation increases the H-bond capacity of O6, and the exo rotamer increases in stability, becoming the dominant rotamer for the 9-EtG and Guo adducts. For L = 3'-GMP and 3'-IMP, stabilization of the endo form upon phosphate deprotonation at neutral pH was observed. This result is attributed to an H-bonding network involving water, the 3'-phosphate, and the Me(3)dien NH groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.