It is well known that gluten plays a major role in determining cooking quality in durum wheat pasta. This work is an attempt to systematically elucidate the role of gluten quantity and nature in determining cooking quality as a function of the drying cycle used in the manufacturing process. Gluten and starch were fractionated from two durum wheat cultivars possessing good and poor gluten quality. Either of them were then added back to the original base semolina to alter its protein content and to produce two semolina series with identical protein contents. Semolinas were processed into pasta and dried following three drying programs (low, medium, and high temperature). Cooking quality was determined with sensorial, chemical, and instrumental methods. The results indicate that optimum cooking time is governed by gluten quality. The positive effect on cooking quality of increasing gluten contents and of the application of HT drying is evident in weak gluten samples, but it is not significant in the strong gluten samples.
Results concerning the production of spaghetti enriched in long chain (LC) n‐3 polyunsaturated fatty acids (PUFA) and, in particular, eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) are reported. Pasta enrichment was obtained by adding different amounts of integrator (0.6, 1.2, and 1.8%) containing EPA (C20:5 n‐3) and DHA (C22:6 n‐3) in a microencapsulated form to commercial semolina. The addition of 1.2% integrator yielded spaghetti that provides ≈20% of the recommended daily intake of LC n‐3 PUFA with high sensorial acceptability and low loss of LC n‐3 PUFA after cooking (<10%). Thus, spaghetti fortified with EPA+DHA could be used to increase consumption of LC n‐3 PUFA and to decrease the dietary n‐6/n‐3 ratio.
Brewer’s spent grains are one of the principal by-products of the brewing industry. For protein and fibre content, this by-product represents an interesting raw material to be reused for manufacturing many other products. To maximize the nutritional characteristics of this by-product, in this study, ingredients derived from brewer’s spent grains were included in the design of innovative dry pasta. Two brewer’s spent grains derivative ingredients, one enriched in proteins and the other in fibre were blended with semolina. Based on the rheological evaluation, the optimal amount of the two ingredients for producing pasta was determined. In particular, pasta responding to the claims “High Protein” and “High Fibre” was realized using the formulation enriched with 15% of protein-rich ingredient and the claim “High Fibre” and “Source of proteins” using the formulation enriched with 10% of fibre-rich ingredient. The final products were compared to 100% semolina and 100% wholegrain semolina pasta for composition, color, texture, and cooking quality, revealing excellent quality characteristics. The newly formulated pasta represents a successful match of technological aptitude, nutritional/sensorial quality, and sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.