Mutation frequencies were studied in 174 Stenotrophomonas maltophilia isolates from clinical and nonclinical environments by detecting spontaneous rifampin-resistant mutants in otherwise-susceptible populations. The distribution of mutation frequencies followed a pattern similar to that found for other bacterial species, with a modal value of 1 ؋ 10 ؊8 . Nevertheless, the proportion of isolates showing mutation frequencies below the modal value (hypomutators) was significantly higher for S. maltophilia than those so far reported in other organisms. Low mutation frequencies were particularly frequent among environmental S. maltophilia strains (58.3%), whereas strong mutators were found only among isolates with a clinical origin. These results indicate that clinical environments might select bacterial populations with high mutation frequencies, likely by secondorder selection processes. In several of the strong-mutator isolates, functional-complementation assays with a wild-type allele of the mutS gene demonstrated that the mutator phenotype was due to the impairment of MutS activity. In silico analysis of the amino acid changes present in the MutS proteins of these hypermutator strains in comparison with the normomutator isolates suggests that the cause of the defect in MutS might be a H683P amino acid change.
Bacterial biofilms play an important role in the persistent colonization of the respiratory tract in cystic fibrosis (CF) patients. The trade-offs among planktonic or sessile modes of growth, mutation frequency, antibiotic susceptibility and mutant prevention concentrations (MPCs) were studied in a well-defined collection of 42 CF Pseudomonas aeruginosa isolates. MICs of ciprofloxacin, tobramycin, imipenem and ceftazidime increased in the biofilm mode of growth, but not the MPCs of the same drugs. The mutation frequency median was significantly higher in planktonic conditions (1.1 × 10(-8)) than in biofilm (9.9 × 10(-9)) (p 0.015). Isolates categorized as hypomutable increased their mutation frequency from 3.6 × 10(-9) in the planktonic mode to 6 × 10(-8) in biofilm, whereas normomutators (from 9.4 × 10(-8) to 5.3 × 10(-8)) and hypermutators (from 1.6 × 10(-6) to 7.7 × 10(-7)) decreased their mutation frequencies in biofilm. High and low mutation frequencies in planktonic growth converge into the normomutable category in the biofilm mode of growth of CF P. aeruginosa, leading to stabilization of MPCs. This result suggests that once the biofilm mode of growth has been established, the propensity of CF P. aeruginosa populations to evolve towards resistance is not necessarily increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.