Background Rickettsia bacteria are responsible for diseases in humans and animals around the world, however few details are available regarding its ecology and circulation among wild animals and human populations at high transmission risk in Brazil. The aim of this study was to investigate the occurrence of ticks and Rickettsia spp. in wild boars, corresponding hunting dogs and hunters. Methods Serum samples and ticks were collected from 80 free-range wild boars, 170 hunting dogs and 34 hunters from southern and central-western Brazil, from the Atlantic Forest and Cerrado biomes, respectively, between 2016 and 2018. Serum samples were tested by indirect immunofluorescent-antibody assay (IFA) to detect IgG antibodies against Rickettsia rickettsii , Rickettsia parkeri , Rickettsia bellii , Rickettsia rhipicephali and Rickettsia amblyommatis . Tick species were identified by morphological taxonomic keys, as previously described. A total of 164 ticks including A . sculptum , A . brasiliense and A . aureolatum were tested in PCR assays for Spotted Fever Group (SFG) Rickettsia spp. Results A total of 58/80 (72.5%) wild boars, 24/170 (14.1%) hunting dogs and 5/34 (14.7%) hunters were positive (titers ≥ 64) to at least one Rickettsia species. A total of 669/1,584 (42.2%) ticks from wild boars were identified as Amblyomma sculptum , 910/1,584 (57.4%) as Amblyomma brasiliense , 4/1,584(0.24%) larvae of Amblyomma spp. and 1/1,584 (0.06%) nymph as Amblyolmma dubitatum . All 9 ticks found on hunting dogs were identified as Amblyomma aureolatum and all 22 ticks on hunters as A . sculptum . No tested tick was positive by standard PCR to SFG Rickettsia spp. Conclusions The present study was the concomitant report of wild boar, hunting dog and hunter exposure to SFG rickettsiae agents, performed in two different Brazilian biomes. Wild boar hunting may increase the risk of human exposure and consequently tick-borne disease Wild boars may be carrying and spreading capybara ticks from their original habitats to other ecosystems. Further studies can be required to explore the ability of wild boars to infecting ticks and be part of transmission cycle of Rickettsia spp.
We conducted a molecular survey for Borrelia spp. in Ornithodoros ticks previously reported as biting humans. We collected specimens in natural ecosystems and inside human dwellings in 6 states in Brazil. Phylogenetic analyses unveiled the occurrence of 4 putatively new species of relapsing fever group borreliae.
Borrelia burgdorferi sensu lato (Bbsl) spirochetes thrive in sylvatic transmission cycles infecting vertebrates and their ticks. Rodents and ticks of the genus Ixodes are important hosts of these spirochetes globally. Although evidence suggests that Borrelia burgdorferi sensu stricto does not exist in South America, genospecies of the group (Bbsl) can be found in this region but have been poorly characterized from a genetic viewpoint, and data on their ecoepidemiology are still incipient. Aiming to detect the natural foci of Borrelia in Brazil, we targeted small mammals inhabiting seven forests fragments during a period of three years (2015–2018). Organs (lung) from two Oligoryzomys rodents over a total of 382 sampled mammals were positive, and we performed a molecular characterization of 10 borrelial genes to achieve a robust analysis. Phylogenetic trees inferred from 16S rRNA, flaB, ospC, and seven MLST loci (clpA, nifS, pepX, pyrG, recG, rlpB, and uvrA) support the characterization of a novel genospecies of Bbsl that we herein name “Candidatus Borrelia paulista” Rp42. Remarkably, “Ca. B. paulista” is phylogenetically related to Borrelia carolinensis, a genospecies that infects Ixodes ticks and cricetid rodents in North America. A previous study performed in the same area identified Ixodes schulzei feeding on Oligoryzomys rodents. Although this tick species could be considered a probable host for this novel Borrelia sp., further research is needed to confirm this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.