The emerge of metabolomics within functional genomics has provided a new dimension in the study of biological systems. In regards to the study of agroecosystems, metabolomics enables monitoring of metabolic changes in association with biotic or abiotic agents such as agrochemicals. Focusing on crop protection chemicals, a great effort has been given towards the development of crop protection agents safer for consumers and the environment and more efficient than the existing ones. Within this framework, metabolomics has so far been a valuable tool for high-throughput screening of bioactive substances in order to discover those with high selectivity, unique modes-of-action, and acceptable eco-toxicological/toxicological profiles. Here, applications of metabolomics in the investigation of the modes-of-action and ecotoxicological-toxicological risk assessment of bioactive compounds, mining of biological systems for the discovery of bioactive metabolites, and the risk assessment of genetic modified crops are discussed.
The biochemical mode of action of (5S,8R,13S,16R)-(-)-pyrenophorol isolated from a Drechslera avenae pathotype was investigated by using metabolic fingerprinting. (1)H NMR spectra of crude leaf extracts from untreated Avena sterilis seedlings and A. sterilis seedlings treated with pyrenophorol were compared with those obtained from treatments with the herbicides diuron, glyphosate, mesotrione, norflurazon, oxadiazon, and paraquat. Multivariate analysis was carried out to group treatments according to the mode of action of the phytotoxic substances applied. Analysis results revealed that none of the herbicide treatments fitted the pyrenophorol model and indicate that the effect of the phytotoxin on A. sterilis differs than those caused by glyphosate, mesotrione, norflurazon, oxadiazon, paraquat, and diuron, which inhibit 5-enolpyruvylshikimate-3-phosphate synthase, 4-hydroxyphenyl-pyruvate-dioxygenase, phytoene desaturase, protoporphyrinogen oxidase, photosystem I, and photosystem II, respectively. The method applied, combined with appropriate data preprocessing and analysis, was found to be rapid for the screening of phytotoxic substances for metabolic effects.
A secondary metabolite was isolated from cultures of a Drechslera avenae pathotype with host specificity to Avena sterilis and identified as the macrodiolide (8R,16R)-(-)-pyrenophorin (8,16-dimethyl-1,9-dioxa-cyclohexadeca-3,11-diene-2,5,10,13-tetraone). A considerable yield of the substance was obtained after 8-12 days of incubation at temperatures of 15-20 degrees C. The compound at a concentration of 60 microM inhibited seed germination of wild oats (Avena sterilis, A. fatua), oat (A. sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare). Root growth of pregerminated seeds of the graminaceous plants was stimulated, remained unaffected, or was inhibited by pyrenophorin at 10-30, 31-50, and >51 microM, respectively. The metabolite caused abnormal chlorophyll retention in leaf sections of all five graminaceous plants, but seedling cuttings partially immersed in 1000 microM solutions remained unaffected. The rate of chlorophyll dissipation was decreased by half in leaf sections treated with pyrenophorin at 320 microM compared with the control. These findings are discussed and compared with data on the production and bioactivity of the macrodiolide (5S,8R,13S,16R)-(-)-pyrenophorol, which has a similar stereochemical configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.