Environmental stresses such as drought (Lauteri et al., 1997), salt stress (Bongi and Loreto, 1989), and leaf aging (Loreto et al., 1994) reduce conductance to CO 2 diffusion in the leaf mesophyll (mesophyll conductance). No information exists about possible increases of mesophyll conductance, such as when the stresses are alleviated. One obstacle to the investigation of this possibility is that mesophyll conductance reduction is frequently associated with the impairment of biochemical and photochemical characteristics of the leaf. The former is generally permanent, whereas the latter may recover slowly. However, it was recently shown that low salt accumulation (leaf Na concentration less than 15 mg g Ϫ1 ) primarily affects the conductance to CO 2 diffusion in spinach (Spinacia oleracea L.) leaves (Delfine et al., 1998). A coordinate reduction in stomatal and mesophyll conductance decreased the chloroplast CO 2 concentration of salt-stressed spinach. This, in turn, caused an inhibition of photosynthesis that was not associated with changes in biochemical or photochemical capacity when salt accumulation in the leaves was two to three times that of the controls.Mesophyll conductance reduction is also frequently associated with changes in leaf anatomy (Longstreth and Nobel, 1979;Bongi and Loreto, 1989;Evans et al., 1994;Syvertsen et al., 1995). This is likely to be a permanent effect, at least when leaf thickness is involved. However, low salt accumulation did not increase but slightly decreased the thickness of spinach leaves (Delfine et al., 1998). On the other hand, salt accumulation caused a 25% reduction of the intercellular spaces in the mesophyll of spinach leaves with respect to the controls. This could have caused a more tortuous path for CO 2 directed toward the chloroplast and was suggested to be responsible for the observed photosynthesis reduction associated with low mesophyll conductance in salt-stressed leaves (Delfine et al., 1998).The objectives of this work were to understand, under conditions that do not affect relevantly the biochemical and photochemical capacity of salt-stressed leaves, and are not able to change leaf anatomy significantly: (a) whether the reduction of mesophyll conductance can be reversed by alleviating the salt stress, and (b) how important changes in mesophyll conductance are in determining photosynthesis limitation. MATERIALS AND METHODS Plant Material and Experimental ConditionsFour groups of 30 spinach (Spinacia oleracea L. cv Matador) plants were grown in 3-dm 3 pots containing a mixture of soil, peat, and sand (1:1:1). When five to six leaves were fully expanded, the first group of plants (control) was grown under optimal water conditions by daily restoring the water lost through evapotranspiration. Evapotranspiration was estimated by weighing the pots daily. The second group of plants (salt stressed) was irrigated for 50 d with saline water (containing 1% [w/v] NaCl) when evapotranspiration was restored. The third group of plants (rewatered) was irrigated with saline w...
Cherry (Prunus avium L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increased the dry mass of each of the plant components studied. Consequently, the total dry mass of shaded plants was significantly greater than that of controls at the end of the growing season. However, the diurnal trend in the level of photosynthesis (per unit of leaf area) of shaded plants was similar to the controls in August, but lower in September. As the growing season proceeded, reduced photosynthetic rates, thinner mesophyll and larger specific leaf area in the shaded plants indicated that leaf development had adapted to shaded conditions throughout the growing season. It is suggested that increased growth of shaded plants was caused by a higher initial relative growth rate and a greater whole‐plant photosynthesis. Shading consistently reduced transpiration over the season, therefore improving water use efficiency of shaded leaves. Our results suggest that a moderate reduction in light intensity can be a useful method for improving growth and saving water in hot and dry environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.