Whole genome duplication (WGD) events are common in many plant lineages, but the ploidy status and possible occurrence of intraspecific ploidy variation are unknown for most species. Standard methods for ploidy determination are chromosome counting and flow cytometry approaches. While flow cytometry approaches typically use fresh tissue, an increasing number of studies have shown that recently dried specimens can be used to yield ploidy data. Recent studies have started to explore whether high-throughput sequencing (HTS) data can be used to assess ploidy levels by analyzing allelic frequencies from single copy nuclear genes. Here, we compare different approaches using a range of yam ( Dioscorea ) tissues of varying ages, drying methods and quality, including herbarium tissue. Our aims were to: (1) explore the limits of flow cytometry in estimating ploidy level from dried samples, including herbarium vouchers collected between 1831 and 2011, and (2) optimize a HTS-based method to estimate ploidy by considering allelic frequencies from nuclear genes obtained using a target-capture method. We show that, although flow cytometry can be used to estimate ploidy levels from herbarium specimens collected up to fifteen years ago, success rate is low (5.9%). We validated our HTS-based estimates of ploidy using 260 genes by benchmarking with dried samples of species of known ploidy ( Dioscorea alata , D. communis , and D. sylvatica ). Subsequently, we successfully applied the method to the 85 herbarium samples analyzed with flow cytometry, and successfully provided results for 91.7% of them, comprising species across the phylogenetic tree of Dioscorea . We also explored the limits of using this HTS-based approach for identifying high ploidy levels in herbarium material and the effects of heterozygosity and sequence coverage. Overall, we demonstrated that ploidy diversity within and between species may be ascertained from historical collections, allowing the determination of polyploidization events from samples collected up to two centuries ago. This approach has the potential to provide insights into the drivers and dynamics of ploidy level changes during plant evolution and crop domestication.
Viburnum tinus is an evergreen shrub that is native to the Mediterranean region but cultivated widely in Europe and around the world. It produces ripe metallic blue fruits throughout winter [1]. Despite its limited fleshy pulp,[2] its high lipid content[3] makes it a valuable resource to the small birds[4] that act as its seed-dispersers [5]. Here, we find that the metallic blue appearance of the fruits is produced by globular lipid inclusions arranged in a disordered multilayer structure. This structure is embedded in the cell walls of the epicarp and underlaid with a dark layer of anthocyanin pigments. The presence of such large, organised lipid aggregates in plant cell walls represents a new mechanism for structural colouration and may serve as an honest signal of nutritional content. 639088 (S.V., Y.O., G.J.), a microMORPH Cross-Training Grant (M.S.A.), a Yale Institute for Biospheric Studies grant (M.S.A.), National Science Foundation (NSF)SF GRFP DGE-1122492 (M.S.A.), and NSF DBI 1907293 (M.S.A.). We would like to acknowledge the assistance of the Boulder Electron Microscopy Service in preparation and imaging the serial block-face, and the support of the Cambridge Advanced Imaging Centre and the NanoBio-ICMG platform (FR 2607) electron microscopy facility. We are grateful to Heather Whitney and Innes Cuthill for loan of equipment and to two anonymous referees for advice and comments which improved the manuscript.
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Boreo-arctic sponge grounds are essential deep-sea structural habitats that provide important services for the ecosystem. These large sponge aggregations are dominated by demosponges of the genus Geodia (order Tetractinellida, family Geodiidae). However, little is known about the basic biological features of these species, such as their life cycle and dispersal capabilities. Here, we surveyed five deep-sea species of Geodia from the North-Atlantic Ocean and studied their reproductive cycle and strategy using light and electron microscopy. The five species were oviparous and gonochoristic. Synchronous development was observed at individual and population level in most of the species. Oocytes had diameters ranging from 8 μm in previtellogenic stage to 103 μm in vitellogenic stage. At vitellogenic stages, oocytes had high content of lipid yolk entirely acquired by autosynthesis, with no participation of nurse cells. Intense vertical transmission of bacterial symbionts to the oocytes by phagocytosis through pseudopodia was observed, especially in late stages of oogenesis. The density of oocytes within the sponge tissue was on average 10 oocytes/mm2 across all species, higher than that of most temperate and tropical oviparous species studied elsewhere. Spermatic cysts were widespread over the tissue during early stages, or fused in larger cysts, around the canals in later stages, and occupying between 1.5 and 12% of the tissue in males. The reproductive season spanned similar periods for all Geodia spp.: from late spring to early autumn. During the reproductive peak of each species, between 60 and 90% of the population was engaged in reproduction for most species. Given the present hazards that threaten the boreo-arctic tetractinellid sponge grounds, it becomes crucial to understand the processes behind the maintenance and regeneration of populations of keystone deep-sea species in order to predict the magnitude of human impacts and estimate their ability to recover. The information provided in this study will be useful for developing adequate conservation strategies for these vulnerable deep-sea habitats.
Background and aims Hydraulic studies are currently biased towards conifers and dicotyledonous angiosperms; responses of arborescent monocots to increasing temperature and drought remain poorly known. This study aims to assess xylem resistance to drought-induced embolism in palms. Methods We quantified embolism resistance via P50 (xylem pressure inducing 50 % embolism or loss of hydraulic conductivity) in petioles and leaflets of six palm species differing in habitat and phylogenetic relatedness using three techniques: in vivo X-ray-based microcomputed tomography, the in situ flow centrifuge technique and the optical vulnerability method. Key results Our results show that P50 of petioles varies greatly in the palm family, from −2.2 ± 0.4 MPa in Dypsis baronii to −5.8 ± 0.3 MPa in Rhapis excelsa (mean ± s.e.). No difference or weak differences were found between petioles and leaf blades within species. Surprisingly, where differences occurred, leaflets were less vulnerable to embolism than petioles. Embolism resistance was not correlated with conduit size (r = 0.37, P = 0.11). Conclusions This study represents the first estimate of drought-induced xylem embolism in palms across biomes and provides the first step towards understanding hydraulic adaptations in long-lived arborescent monocots. It showed an almost 3-fold range of embolism resistance between palm species, as large as that reported in all angiosperms. We found little evidence for hydraulic segmentation between leaflets and petioles in palms, suggesting that when it happens, hydraulic segregation may lack a clear relationship with organ cost or replaceability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.