An algorithm using PCA and discriminant analysis based on m-distance has been developed and successfully applied to diagnose coronary artery disease by NIRS obtaining good sensitivity and specificity for each tissue category.
The tissue response to laser therapy appears to vary by dose. Low-intensity laser therapy appears to reduce the severity of mucositis, at least in part, by reducing COX-2 levels and associated inhibition of the inflammatory response.
Fourier-transform (FT)-Raman spectroscopy has been used for identification and evaluation of human artherosclerotic lesions, providing biochemical information on arteries. In this work, fragments of human carotid arteries postmortem were analyzed using a FT-Raman spectrometer operating at an excitation wavelength of 1064 nm, power of 200 mW, and spectral resolution of 4 cm(-1). A total of 75 carotid fragments were spectroscopically scanned and FT-Raman results were compared with histopathology. Discriminant analysis using Mahalanobis distance was applied over principal components scores for tissue classification into three categories: nonatherosclerotic, atherosclerotic plaque without calcification and with calcification. Nonatherosclerotic artery, atherosclerotic plaque, and calcified plaque exhibit spectral signatures related to biochemicals presented in each tissue type, such as bands of collagen and elastin (proteins), cholesterol and its esters, and calcium hydroxyapatite and carbonate apatite, respectively. Spectra of nonatherosclerotic artery were then classified into two groups: normal and discrete diffuse thickening of the intima layer (first group) and moderate and intense diffuse thickening of the intima layer (second group). FT-Raman could identify and classify the tissues found in the atherosclerotic process in human carotid in vitro and had the ability to identify alterations to the diffuse thickening of the intima layer and classify it depending on the intensity of the thickening.
This study supports two mechanisms of action for LLLT in reducing mucositis severity. The increase in collagen organization in response to the 35 mW laser indicates that LLLT promotes wound healing. In addition, LLLT also appears to have an anti-inflammatory effect, as evidenced by the reduction in neutrophil infiltrate.
The purpose of this study was to investigate the effect of low level laser therapy (LLLT) on male Wistar rat trachea hyperreactivity (RTHR), bronchoalveolar lavage (BAL) and lung neutrophils influx after Gram-negative bacterial lipopolyssacharide (LPS) intravenous injection. The RTHR, BAL and lung neutrophils influx were measured over different intervals of time (90 min, 6 h, 24 h and 48 h). The energy density (ED) that produced an anti-inflammatory effect was 2.5 J/cm(2), reducing the maximal contractile response and the sensibility of trachea rings to methacholine after LPS. The same ED produced an anti-inflammatory effect on BAL and lung neutrophils influx. The Celecoxib COX-2 inhibitor reduced RTHR and the number of cells in BAL and lung neutrophils influx of rats treated with LPS. Celecoxib and LLLT reduced the PGE(2) and TXA(2) levels in the BAL of LPS-treated rats. Our results demonstrate that LLLT produced anti-inflammatory effects on RTHR, BAL and lung neutrophils influx in association with inhibition of COX-2-derived metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.