Sour cassava starch (polvilho azedo) is a chemically and enzymatically modified starch with the specific property of expansion in bakery products without the use of any chemical or biological leavening agents. In this work, the cumulative knowledge about sour cassava starch is presented in relation to its physicochemical characteristics, with the purpose of establishing a relation between the application properties and some structural and chemical characteristics in order to design a model of the modified structure of starch and the most important technical variables. Such approach will help to provide some quality standards for future adequate valorization of sour cassava starch, especially with respect to potential use in gluten-free products. This work showed that a good sour cassava starch is significantly different from low expansion cassava starches with respect to pH, acid factor, swelling power, specific volume, and polymerization degree (intrinsic viscosity). These variables could be related to the maximization of sour cassava starch expansion for a future predictive decision analysis about a high quality sour cassava starch to the baking use.
Resumo Com o intuito de analisar a adequação dos Planos Estaduais de Segurança
The effect of glucose syrup addition on sour cassava starch fermentation was studied on cassava starch from three locations in Santa Catarina State (Brazil), following four treatments: traditional, 0.10, 0.25 and 0.50% of glucose syrup added to total cassava suspension volume. A glucose syrup concentration of 0.50% contributed to doubling fermentation yield. The objective of this work was to observe the effect of the cassava starch fermentation process on starch granule microstructure, as compared with industrial processing. Micrography was performed using a scanning electron microscope, at 2000¥ magnification. Fermentations with 0.50% glucose syrup presented the greatest effects on starch granule microstructure.
The aim of this work was to study the effect of improved fermentation on sour cassava starch, aiming to reduce its fermentation time and to enhance its expansion capacity as well as its viscoamylographic properties and its sensorial acceptability. Results showed that the improved process of cassava starch production did not harm starch expansion, physicochemical properties or sensorial acceptability; it also produced starches with different viscoamylographic properties, which compared favourably to those of the sour cassava starch produced through current industrial methods.
O Polvilho azedo é caracterizado pelas suas propriedades físicas, químicas e reológicas, as quais são diferentes do amido nativo do qual se originou. A propriedade de expansão é uma das mais importantes características do produto, sendo um parâmetro fundamental de avaliação do polvilho azedo. O resultado do perfil viscoamilográfico também é uma importante maneira de avaliação uma vez que cada amido tem um padrão viscoamilográfico definido de acordo com sua organização granular. Este trabalho determinou o efeito da fermentação melhorada pela adição de glicose, sobre o polvilho azedo, apontando para uma redução no tempo de fermentação e avaliando sua capacidade de expansão, suas propriedades viscoamilográficas e aceitabilidade sensorial. O processo de produção de polvilho azedo melhorado não prejudicou a expansão do amido, suas propriedades físico-químicas e sensoriais, mas sim resultou em amidos com diferentes propriedades viscoamilográficas melhores comparativamente ao polvilho azedo produzido pelo processo industrial atual
Brominated flame retardants (BFR) are primarily used as flame retardant additives in insulating materials. These lipophilic compounds can bioaccumulate in animal tissues, leading to human exposure via food ingestion. Although their concentration in food is not yet regulated, several of these products are recognised as persistent organic pollutants; they are thought to act as endocrine disruptors. The present study aimed to characterise the occurrence of two families of BFRs (hexabromocyclododecane (HBCDD) and polybrominated diphenyl ethers (PBDE)) in hen eggs and broiler or pig meat in relation to their rearing environments. Epidemiological studies were carried out on 60 hen egg farms (34 without an open-air range, 26 free-range), 57 broiler farms (27 without an open-air range, 30 free-range) and 42 pig farms without an open-air range in France from 2013 to 2015. For each farm, composite samples from either 12 eggs, five broiler pectoral muscles or three pig tenderloins were obtained. Eight PBDE congeners and three HBCDD stereoisomers were quantified in product fat using gas chromatography–high-resolution mass spectrometry, or high-performance liquid chromatography–tandem mass spectrometry, respectively. The frequencies of PBDE detection were 28% for eggs (median concentration 0.278 ng/g fat), 72% for broiler muscle (0.392 ng/g fat) and 49% for pig muscle (0.403 ng/g fat). At least one HBCDD stereoisomer was detected in 17% of eggs (0.526 ng/g fat), 46% of broiler muscle (0.799 ng/g fat) and 36% of pig muscle (0.616 ng/g fat). Results were similar in concentration to those obtained in French surveillance surveys from 2012 to 2016. Nevertheless, the contamination of free-range eggs and broilers was found to be more frequent than that of conventional ones, suggesting that access to an open-air range could be an additional source of exposure to BFRs for animals. However, the concentration of BFRs in all products remained generally very low. No direct relationship could be established between the occurrence of BFRs in eggs and meat and the characteristics of farm buildings (age, building materials). The potential presence of BFRs in insulating materials is not likely to constitute a significant source of animal exposure as long as the animals do not have direct access to these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.