The work in this paper focuses on providing malleability to MPI applications by using a novel performance-aware dynamic reconfiguration technique. This paper describes the design and implementation of Flex-MPI, an MPI library extension which can automatically monitor and predict the performance of applications, balance and redistribute the workload, and reconfigure the application at runtime by changing the number of processes. Unlike existent approaches, our reconfiguring policy is guided by user-defined performance criteria. We focus on iterative SPMD programs, a class of applications with critical mass within the scientific community. Extensive experiments show that Flex-MPI can improve the performance, parallel efficiency, and cost-efficiency of MPI programs with a minimal effort from the programmer.
The driving force behind the smart city initiative is to offer better, more specialized services which can improve the quality of life of the citizens while promoting sustainability. To achieve both of these apparently competing goals, services must be increasingly autonomous and continuously adaptive to changes in their environment and the information coming from other services. In this paper we focus on smart lighting, a relevant application domain for which we propose an intelligent street light control system based on adaptive behavior rules. We evaluate our approach by using a simulator which combines wireless sensor networks and belief-desire-intention (BDI) agents to enable a precise simulation of both the city infrastructure and the adaptive behavior that it implements. The results reveal energy savings of close to 35% when the lighting system implements an adaptive behavior as opposed to a rigid, predefined behavior.
A set of constraints is unsatisfiable if there is no solution that satisfies these constraints. To analyse unsatisfiable problems, the user needs to understand where inconsistencies come from and how they can be repaired. Minimal unsatisfiable cores and correction sets are important subsets of constraints that enable such analysis. In this work, we propose a new algorithm for extracting minimal unsatisfiable cores and correction sets simultaneously. Building on top of the relaxation and strengthening framework, we introduce novel techniques for extracting these sets. Our new solver significantly outperforms several state of the art algorithms on common benchmarks when it comes to extracting correction sets and compares favorably on core extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.