The work in this paper focuses on providing malleability to MPI applications by using a novel performance-aware dynamic reconfiguration technique. This paper describes the design and implementation of Flex-MPI, an MPI library extension which can automatically monitor and predict the performance of applications, balance and redistribute the workload, and reconfigure the application at runtime by changing the number of processes. Unlike existent approaches, our reconfiguring policy is guided by user-defined performance criteria. We focus on iterative SPMD programs, a class of applications with critical mass within the scientific community. Extensive experiments show that Flex-MPI can improve the performance, parallel efficiency, and cost-efficiency of MPI programs with a minimal effort from the programmer.
BackgroundTo understand how infectious agents disseminate throughout a population it is essential to capture the social model in a realistic manner. This paper presents a novel approach to modeling the propagation of the influenza virus throughout a realistic interconnection network based on actual individual interactions which we extract from online social networks. The advantage is that these networks can be extracted from existing sources which faithfully record interactions between people in their natural environment. We additionally allow modeling the characteristics of each individual as well as customizing his daily interaction patterns by making them time-dependent. Our purpose is to understand how the infection spreads depending on the structure of the contact network and the individuals who introduce the infection in the population. This would help public health authorities to respond more efficiently to epidemics.ResultsWe implement a scalable, fully distributed simulator and validate the epidemic model by comparing the simulation results against the data in the 2004-2005 New York State Department of Health Report (NYSDOH), with similar temporal distribution results for the number of infected individuals. We analyze the impact of different types of connection models on the virus propagation. Lastly, we analyze and compare the effects of adopting several different vaccination policies, some of them based on individual characteristics -such as age- while others targeting the super-connectors in the social model.ConclusionsThis paper presents an approach to modeling the propagation of the influenza virus via a realistic social model based on actual individual interactions extracted from online social networks. We implemented a scalable, fully distributed simulator and we analyzed both the dissemination of the infection and the effect of different vaccination policies on the progress of the epidemics. The epidemic values predicted by our simulator match real data from NYSDOH. Our results show that our simulator can be a useful tool in understanding the differences in the evolution of an epidemic within populations with different characteristics and can provide guidance with regard to which, and how many, individuals should be vaccinated to slow down the virus propagation and reduce the number of infections.
Abstract. This paper introduces FLEX-MPI, a novel runtime approach for the dynamic load balancing of MPI-based SPMD applications running on heterogeneous platforms in the presence of dynamic external loads. To effectively balance the workload, FLEX-MPI monitors the actual performance of applications via hardware counters and the MPI profiling interface-with a negligible overhead and minimal code modifications. Our results show that by using this approach the execution time of an application may be significantly reduced.
The work we present in this paper focuses on understanding the propagation of flu-like infectious outbreaks between geographically distant regions due to the movement of people outside their base location. Our approach incorporates geographic location and a transportation model into our existing region-based, closed-world EpiGraph simulator to model a more realistic movement of the virus between different geographic areas. This paper describes the MPI-based implementation of this simulator, including several optimization techniques such as a novel approach for mapping processes onto available processing elements based on the temporal distribution of process loads. We present an extensive evaluation of EpiGraph in terms of its ability to simulate large-scale scenarios, as well as from a performance perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.