Neutrase, a commercial preparation of Bacillus subtilis , was covalently immobilized on alginate-glutaraldehyde beads. Immobilization conditions and characterization of the immobilized enzyme were investigated. Central composite design and response surface methods were employed to evaluate the effects of immobilization parameters, such as glutaraldehyde concentration, enzyme loading, immobilization pH, and immobilization time. Under optimized working conditions (2% alginate, 6.2% glutaraldehyde, 61.84 U mL(-1) Neutrase, pH 6.2, and 60 min) the immobilization yield was about 50%. The immobilized enzyme exhibited higher K(m) compared to the soluble enzyme. The pH-activity profile was widened upon immobilization. The optimum temperature was shifted from 50 to 60 degrees C, and the apparent activation energy was decreased from 47.7 to 22.0 kJ mol(-1) by immobilization. The immobilized enzyme also showed significantly enhanced thermal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.