Dermatophytes are agents of typically benign superficial infections. However, an increasing number of severe infections in immunocompromised hosts has been reported. We aimed to understand the factors underlying the existence of a cohort of patients presenting with chronic widespread dermatophytosis (CWD) due to Trichophyton rubrum, but with no signs of immunodeficiency. Their disease is usually recurrent and difficult to manage. Fourteen patients meeting the following criteria for CWD were studied: T. rubrum culture-proven skin lesions of ≥10 cm in at least one dimension; the involvement of at least three non-contiguous localizations of >1 year’s duration; and no predisposing conditions. For comparison, we also studied 13 acute Tinea pedis patients. Macrophages and neutrophils were isolated and tested for T. rubrum conidia phagocytic and killing activity. H2O2, NO, and pro- and anti-inflammatory cytokine release were measured. All experiments were run with age- and sex-matched healthy donors’ cells in parallel. CWD patients’ macrophages and neutrophils presented with reduced T. rubrum–phagocytic and killing abilities, and reduced H2O2 and NO release when compared with those of healthy donors. CWD patients’ macrophages secreted lower levels of the proinflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α, but enhanced levels of the anti-inflammatory cytokine IL-10. Neutrophil secretion closely followed this unbalanced pattern. In contrast, responses to the positive controls zymosan, lipopolysaccharide, and phorbol myristate acetate were comparable with those of healthy donors. The same experiments were performed with macrophages and neutrophils from the acute Tinea pedis patients and showed no differences when compared with the matched healthy donors. Patients with CWD have a T. rubrum-related functional deficiency of phagocytes and may represent a distinct clinical entity in the complex spectrum of the Trichophyton–host interaction.
Chromoblastomycosis is characterized by the slow development of polymorphic skin lesions (nodules, verrucas, tumores, plaques and scar tissue). Inside the host, infectious propagules adhere to epithelial cells and differentiate into sclerotic forms, which effectively resist destruction by host effector cells and allow onset of chronic disease. A cellular immune response against fungi is essential to control infection. Amongst the cells of the immune system, macrophages play the most important role in controlling fungal growth. In this study, we show that the fungicidal characteristic of macrophages is dependent on the fungal species that causes chromoblastomycosis. We began by observing that the phagocytic index was higher for Fonsecaea pedrosoi and Rhinocladiella aquaspersa compared with that of other fungi. Complement‐mediated phagocytosis was more important for Phialophora verrucosa and R. aquaspersa and was inhibited by mannan when F. pedrosoi and R. aquaspersa conidia were phagocytosed by macrophages. We showed that macrophages killed significantly only R. aquaspersa. We also found that the phagocytosis of fungi has functional consequences for macrophages as phagocytosis resulted in down‐modulation of MHC‐II and CD80 expression as well as in the inhibition of the basal liberation of NO. However, the inhibition of the basal liberation of NO nor the down‐modulation of MHC and co‐stimulatory molecules were observed in the presence of R. aquaspersa.
Little is known regarding whether photodynamic therapy (PDT)-induced cell death can substantially compromise macrophages (MΦ), which are important cells in PDT-induced immune responses. Here, parameters of PDT-mediated MΦ cytotoxicity and cytokine production in response to protoporphyrin IX (PpIX) were evaluated. Peritoneal MΦ from BALB/c mice were stimulated in vitro with PDT, light, PpIX, or lipopolysaccharide (LPS). After that, cell viability, lipid peroxidation, Nitric Oxide (NO), DNA damage, TNF-α, IL-6 and IL-10 were evaluated. Short PDT exposure reduced cell viability by 10–30%. There was a two-fold increase in NO and DNA degradation, despite the non-increase in lipoperoxidation. PDT increased TNF-α and IL-10, particularly in the presence of LPS, and decreased the production of IL-6 to 10-fold. PDT causes cellular stress, induces NO radicals and leads to DNA degradation, generating a cytotoxic microenvironment. Furthermore, PDT modulates pro- and anti-inflammatory cytokines in MΦ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.