AimsThe type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed that pharmacologically inhibiting fatty acid uptake, as the primary step in the pathway, would provide an alternative mechanism to rebalance metabolism and prevent lipid accumulation following hypoxic stress.Methods and resultsHearts from type 2 diabetic and control male Wistar rats were perfused in normoxia, hypoxia and reoxygenation, with the FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO) infused 4 min before hypoxia. SSO infusion into diabetic hearts decreased the fatty acid oxidation rate by 29% and myocardial triglyceride concentration by 48% compared with untreated diabetic hearts, restoring fatty acid metabolism to control levels following hypoxia-reoxygenation. SSO infusion increased the glycolytic rate by 46% in diabetic hearts during hypoxia, increased pyruvate dehydrogenase activity by 53% and decreased lactate efflux rate by 56% compared with untreated diabetic hearts during reoxygenation. In addition, SSO treatment of diabetic hearts increased intermediates within the second span of the Krebs cycle, namely fumarate, oxaloacetate, and the FAD total pool. The cardiac dysfunction in diabetic hearts following decreased oxygen availability was prevented by SSO-infusion prior to the hypoxic stress. Infusing SSO into diabetic hearts increased rate pressure product by 60% during hypoxia and by 32% following reoxygenation, restoring function to control levels.ConclusionsDiabetic hearts have limited metabolic flexibility and cardiac dysfunction when stressed, which can be rapidly rectified by reducing fatty acid uptake with the FAT/CD36 inhibitor, SSO. This novel therapeutic approach not only reduces fat oxidation but also lipotoxicity, by targeting the primary step in the fatty acid metabolism pathway.
Key pointsr Adaptation to hypoxia makes the heart more oxygen efficient, by metabolising more glucose.In contrast, type 2 diabetes makes the heart metabolise more fatty acids.r Diabetes increases the chances of the heart being exposed to hypoxia, but whether the diabetic heart can adapt and respond is unknown.r In this study we show that diabetic hearts retain the ability to adapt their metabolism in response to hypoxia, with functional hypoxia signalling pathways.r However, the hypoxia-induced changes in metabolism are additive to abnormal baseline metabolism, resulting in hypoxic diabetic hearts metabolising more fat and less glucose than controls. This stops the diabetic heart being able to recover its function when stressed.r These results demonstrate that the diabetic heart retains metabolic flexibility to adapt to hypoxia, but is hindered by the baseline effects of the disease. This increases our understanding of how the diabetic heart is affected by hypoxia-associated complications of the disease.Abstract Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, although they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. Here, we have explored the interplay between maturation by stimulation of fatty acid oxidation and by culture in 3D. We have investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, in porous collagen-derived scaffolds and in engineered heart tissue (EHT), by measuring rates of glycolysis and glucose and fatty acid oxidation (FAO), and changes in gene expression and mitochondrial oxygen consumption. FAO was stimulated by activation of peroxisome proliferator-activated receptor alpha (PPARα), using oleate and the agonist WY-14643, which induced an increase in FAO in monolayer hiPSC-CMs. hiPSC-CMs grown in 3D on collagen-derived scaffolds showed reduced glycolysis and increased FAO compared with monolayer cells. Activation of PPARα further increased FAO in cells on collagen/elastin scaffolds but not collagen or collagen/chondroitin-4-sulphate scaffolds. In EHT, FAO was significantly higher than in monolayer cells or those on static scaffolds and could be further increased by culture with oleate and WY-14643. In conclusion, a more mature metabolic phenotype can be induced by culture in 3D and FAO can be incremented by pharmacological stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.