We assessed the role of Dectin-1 in the immune response to the pathogenic fungus Coccidioides, both in vitro and in vivo, using mice with a targeted mutation in Clec7a. Elicited peritoneal macrophages responded to formalin-killed spherules (FKS) and alkali-treated FKS by secreting proinflammatory cytokines in a Dectin-1- and β-glucan-dependent manner. The responses of bone marrow-derived dendritic cells (BMDC) to the same stimulants were more complex; interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α) secretion was independent of Dectin-1, while IL-6, IL-10, and granulocyte-macrophage colony-stimulating factor (GM-CSF) were largely but not entirely dependent on Dectin-1. After intranasal infection, Dectin-1−/− mice had lower concentrations of IL-12p70, gamma interferon (IFN-γ), IL-1β, and the Th17 cytokines IL-22, IL-23, and 17A in the lung lavage fluid, which may explain why they were significantly more susceptible to pulmonary coccidioidomycosis two weeks after infection. The Dectin-1 mutation was even more deleterious in (B6 × DBA/2)F2 mice, which are more resistant to coccidioidomycosis than B6 mice by virtue of protective genes from DBA/2, a genetically resistant strain. We also found that two susceptible strains of mice (B6 and BALB/c) expressed much less Dectin-1 in their lungs than did resistant DBA/2 mice. We conclude that Dectin-1 is necessary for resistance to Coccidioides immitis, that Dectin-1 promotes both Th1 and Th17 protective immune responses to this infection, and that there is a correlation between expression of Dectin-1 by the inflammatory infiltrate and resistance to coccidioidomycosis.
We have shown previously that there is a direct correlation between IL-10 levels and susceptibility to Coccidioides immitis peritonitis in C57BL/6 (B6), DBA/2, and BXD recombinant inbred mice. We now show that B6 mice are also more susceptible to C. immitis pneumonia and that interleukin-10 (IL-10)-deficient (IL-10 ؊/؊ ) B6 mice are more resistant to C. immitis pneumonia. In addition, we established that high levels of IL-10 are sufficient to make genetically resistant mice susceptible to both C. immitis peritonitis and pneumonia by infecting h.IL-10 transgenic mice. Infected h.IL-10 transgenic mice express lower levels of gamma interferon, IL-12 p40, and inducible nitric oxide synthetase 2 (NOS2) mRNA in their lungs, implicating inducible NOS as a defense mechanism in this disease. We treated DBA/2 mice with aminoguanidine, and they became more susceptible to C. immitis peritonitis and pneumonia. We conclude that high levels of IL-10 are both necessary and sufficient to make mice susceptible to C. immitis, regardless of the genetic background of the mice, and that IL-10 impairs resistance to C. immitis in part by suppressing NO synthesis.
We investigated the roles of the mannose receptor (MR) and Dectin-2 in resistance to pulmonary coccidioidomycosis in C57BL/6 (B6) mice and in the interaction of myeloid cells with spherules, using B6 mice with targeted mutations in Mrc1 and Clec4n. Spherules are the tissue form of Coccidioides, and we determined that the MR on bone marrow-derived dendritic cells (BMDC) was important for recognition of spherules (formalin-killed spherules [FKS]) and for secretion of interleukin 10 (IL-10) and proinflammatory cytokines in response to FKS by both elicited macrophages and BMDC. Infected MR knockout (KO) mice produced more IL-10 in their lungs than did B6 mice, and MR KO mice also made more protective Th-17 cytokines. In contrast to the MR, Dectin-2 was not required for recognition of FKS by BMDC or for the production of cytokines by BMDC in response to FKS. However, Dectin-2 KO was required for stimulation of elicited peritoneal macrophages. Despite that, lung cytokine levels were not significantly different in Dectin-2 KO mice and B6 mice 14 days after infection, except for IL-1, which was higher in Dectin-2 KO lungs. Although both Dectin-2 ؊/؊ and MR ؊/؊ myeloid cells had reduced proinflammatory cytokine responses to FKS in vitro, neither MR nor Dectin-2 deficiency reduced the resistance of B6 mice to pulmonary coccidioidomycosis.
The thermally dimorphic fungus Histoplasma capsulatum is the causative agent of histoplasmosis, one of the most prevalent endemic mycosis in the Americas. In tropical regions, agro-ecosystems require organic matter replacement, therefore, the use of organic fertilizers has increased disregarding the fact that certain number of such fertilizers might be contaminated with the fungus, and with their handling resulting in human cases and even outbreaks of histoplasmosis. Additionally, in Colombia, chicken manure is the most common raw material used in the production of organic fertilizers. In this work, we reported the isolation of this fungus from chicken manure, and genetically compared with 42 clinical isolates. The genetically compared environmental isolates grouped together with the clinical ones. Our result suggests that chicken manure may be one of H. capsulatum infection sources. Also, the phylogenetic analyses done with other H. capsulatum isolates indicate that the Colombian isolates are widely distributed in the relational tree thus reveling towards the great genetic diversity among the H. capsulatum Colombian isolates.
Genetic factors influence susceptibility to Paracoccidioidomycosis, a Latin American endemic mycosis. The pattern of susceptibility of congenic mouse strains infected with Paracoccidioides brasiliensis resembles the pattern of the Nramp1 gene. Thus, congenic murine bone-marrow-derived macrophage lines B10R (Nramp1rGly169) and B10S (null Nramp1 protein expression, Nramp1sAsp169) were infected with P. brasiliensis conidia and compared, under opsonic and nonopsonic conditions. Opsonization increased the percentage of phagocytosis by both cell lines. B10R macrophages exhibited a higher percentage of cells with associated conidia and higher number of conidia per macrophage than B10S. Heat-inactivation and EDTA treatment of serum used for opsonization, and treatment of macrophages with anti-complement receptor 3 (CR3) decreased phagocytosis by both cell lines. alpha-methyl-d-mannoside reduced phagocytosis by B10R macrophages, suggesting that the mannose receptor participates in phagocytosis by these cells. The CR3 expression was similar on both cell lines and B10R expressed more mannose receptors, but neither cell line expressed CR1. IFNgamma decreased the conversion of conidia to the yeast form of P. brasiliensis in B10R, but not in B10S macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.