We studied the association of Parkinson's disease (PD) with type of menopause (natural or surgical), age at menopause, and postmenopausal estrogen replacement therapy using a case-control design. We used the medical records-linkage system of the Rochester Epidemiology Project to identify 72 women who developed PD in Olmsted County, MN, during the twenty years 1976-1995. Each incident case was matched by age (+/- 1 year) to a general population control subject. We collected exposure data through review of the complete medical records of cases and control subjects in the system. PD cases had undergone hysterectomy (with or without unilateral oophorectomy) significantly more often than control subjects (odds ratio [OR] = 3.36; 95% confidence interval [CI] = 1.05-10.77). In addition, PD cases had experienced early menopause (< or = 46 years) more commonly than control subjects (OR = 2.18; 95% CI = 0.88-5.39). Finally, PD cases had used estrogens orally or parenterally for at least 6 months after menopause less frequently (8%) than control subjects (14%; OR = 0.47; 95% CI = 0.12-1.85). However, the findings for early menopause and estrogen replacement therapy were not statistically significant. Despite the limited sample size of this exploratory study, we hypothesize that there is an increased risk of PD in conditions causing an early reduction in endogenous estrogen. This hypothesis needs to be confirmed in a larger study.
Anti-myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) recently emerged as a potential biomarker in patients with inflammatory demyelinating diseases of the central nervous system. We here compare the clinical and laboratory findings observed in a cohort of MOG-Ab seropositive and seronegative cases and describe IgG subclass analysis results. Consecutive serum samples referred to Verona University Neuropathology Laboratory for aquaporin-4 (AQP4)-Ab and/or MOG-Ab testing were analysed between March 2014 and May 2017. The presence of AQP4-Ab was determined using a cell-based assay. A live cell immunofluorescence assay was used for the detection of MOG-IgG and IgG subclass analysis. Among 454 analysed samples, 29 were excluded due to AQP4-Ab positivity or to the final demonstration of a disorder not compatible with MOG-Ab. We obtained clinical data in 154 out of 425 cases. Of these, 22 subjects resulted MOG-Ab positive. MOG-Ab positive patients were mainly characterised by the involvement of the optic nerve and/or spinal cord. Half of the cases presented relapses and the recovery was usually partial. Brain MRI was heterogeneous while short lesions were the prevalent observation on spinal cord MRI. MOG-Ab titre usually decreased in non-relapsing cases. In all MOG-IgG positive cases, we observed IgG1 antibodies, which were predominant in most subjects. IgG2 (5/22), IgG3 (9/22) and IgG4 (3/22) antibodies were also detectable. We confirm that MOG-Ab-related syndromes have distinct features in the spectrum of demyelinating conditions, and we describe the possible role of the different IgG subclasses in this condition.Electronic supplementary materialThe online version of this article (doi:10.1007/s00415-017-8635-4) contains supplementary material, which is available to authorized users.
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx.doi.org/10.1101/143933 doi: bioRxiv preprint first posted online Jul. 13, 2017; 2 Abstract:We assembled and analyzed genetic data of 47,351 multiple sclerosis (MS) subjects and 68,284 control subjects and establish a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 independent associations within the extended MHC. We used an ensemble of methods to prioritize up to 551 potentially associated MS susceptibility genes, that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we do find enrichment for MS genes in these brain-resident immune cells. Thus, while MS is most likely initially triggered by perturbation of peripheral immune responses the functional responses of microglia and other brain cells are also altered and may have a role in targeting an autoimmune process to the central nervous system.
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system characterized by chronic inflammation, demyelination, and axonal damage. As microRNA (miRNA)-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response, miRNA deregulation may result in defects in immune tolerance. In this frame, we sought to explore the possible involvement of miRNAs in MS pathogenesis by monitoring the differential expression of 22 immunity-related miRNAs in peripheral blood mononuclear cells of MS patients and healthy controls, by using a microbead-based technology. Three miRNAs resulted >2 folds up-regulated in MS vs controls, whereas none resulted down-regulated. Interestingly, the most up-regulated miRNA (mir-155; fold change = 3.30; P = 0.013) was previously reported to be up-regulated also in MS brain lesions. Mir-155 up-regulation was confirmed by qPCR experiments. The role of mir-155 in MS susceptibility was also investigated by genotyping four single nucleotide polymorphisms (SNPs) mapping in the mir-155 genomic region. A haplotype of three SNPs, corresponding to a 12-kb region encompassing the last exon of BIC (the B-cell Integration Cluster non-coding RNA, from which mir-155 is processed), resulted associated with the disease status (P = 0.035; OR = 1.36, 95% CI = 1.05–1.77), suggesting that this locus strongly deserves further investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.