The inoculation of legume seeds with Sinorhizobium bacteria significantly improves pasture production. Here, we report the draft genome sequence of symbiotically efficient and salt-tolerant Sinorhizobium meliloti inoculant strain AK555, which substantially increases biomass yield of a number of Medicago sativa subsp.
the primary center of the diversity of their host plants whereas those sequences are lost under an abiotic stress (salinity) impact. In addition, strains harboring different chromosome types, according to structural differences in the intergenic sequence of rrn-rrl operons, can be referred to divergent clonal lineages. According to the discussed data, it was suggested to consider strain 425a and its derivatives as the model S. meliloti strains to create a system for genetic monitoring of practically valuable strains in agrocenoses.
Root nodule bacteria of Sinorhizobium meliloti species live in a symbiotic relationship with alfalfa plants. We report here the draft genome sequence of S. meliloti strain AK170, recovered from nodules of Medicago orthoceras (Kar.
Sinorhizobium meliloti is a Gram-negative bacterium which fixes atmospheric nitrogen in symbiosis with Medicago spp. We report the draft genome sequence of S. meliloti strain CXM1-105, associated with nodules of Medicago sativa subsp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.