BackgroundMost research on Ocean Acidification (OA) has largely focused on the process of calcification and the physiological trade-offs employed by calcifying organisms to support the building of calcium carbonate structures. However, there is growing evidence that OA can also impact upon other key biological processes such as survival, growth and behaviour. On wave-swept rocky shores the ability of gastropods to self-right after dislodgement, and rapidly return to normal orientation, reduces the risk of predation.Methodology/Principal FindingsThe impacts of OA on this self-righting behaviour and other important parameters such as growth, survival, shell dissolution and shell deposition in Concholepas concholepas (loco) were investigated under contrasting pCO2 levels. Although no impacts of OA on either growth or net shell calcification were found, the results did show that OA can significantly affect self-righting behaviour during the early ontogeny of this species with significantly faster righting times recorded for individuals of C. concholepas reared under increased average pCO2 concentrations (± SE) (716±12 and 1036±14 µatm CO2) compared to those reared at concentrations equivalent to those presently found in the surface ocean (388±8 µatm CO2). When loco were also exposed to the predatory crab Acanthocyclus hassleri, righting times were again increased by exposure to elevated CO2, although self-righting times were generally twice as fast as those observed in the absence of the crab.Conclusions and SignificanceThese results suggest that self-righting in the early ontogeny of C. concholepas will be positively affected by pCO2 levels expected by the end of the 21st century and beginning of the next one. However, as the rate of self-righting is an adaptive trait evolved to reduce lethal predatory attacks, our result also suggest that OA may disrupt prey responses to predators in nature.
BackgroundBiological invasions affecting rocky intertidal zonation patterns, yield information on species interactions. In the Bay of Antofagasta, northern Chile, the non-indigenous tunicate Pyura praeputialis, originally from Australia, has invaded (in the past century or so) and monopolized a major portion of the mid-intertidal rocky shore, displacing upshore the native mussel Perumytilus purpuratus. In Antofagasta the tunicate is subjected to intensive exploitation. Monitoring protocols show that in the past 10 years Antofagasta's tunicate population has experienced a drastic decline, affecting the intertidal zonation pattern.Methodology/Principal FindingsA 12.5 km of coastline, on the southern eastern shore of the Bay of Antofagasta, was studied. Eight sites were systematically (1993–1994) or sporadically (2003–2014) monitored for the seaward-shoreward expansion or reduction of the tunicate Pyura praeputialis, and native mussel and barnacle bands. A notable reduction in the mid-intertidal band of P. praeputialis and a seaward expansion of the mussel, Perumytilus purpuratus, and barnacle bands was observed. We suggest that the major cause for the decline in the tunicate is due to its intensive exploitation by rocky shore Pyura-gathers. The rate of extraction of tunicates by professional Pyura-gathers ranged between 256–740 tunicates hour−1. Between 2009–2014 the density of professional Pyura-gather ranged between 0.5–4.5 km−1 per low tide. Hence, 10 professional Pyura-gathers working 1 h for 10 low tides per month, during 6 months, will remove between 307–888 m2 of tunicates. A drastic decline in tunicate recruitment was observed and several P. praeputialis ecosystems services have been lost.Conclusion and SignificanceIn Antofagasta, the continuous and intensive intertidal gathering of the invasive tunicate Pyura praeputialis, has caused a drastic reduction of its population modifying the zonation pattern. Thereby, native mussel Perumytilus purpuratus has regained its ecological center in the intertidal zone. We recorded a Pyura recruitment failure and loss of ecosystem services.
We report a mechanism of crypsis present during the vulnerable early post-metamorphic ontogeny (≤20 mm peristomal length) of the muricid snail Concholepas concholepas , a rocky shore keystone predator characteristic of the southeastern Pacific coast. In the field, we found a significant occurrence (>95%) of specimens bearing patterns of shell coloration (dark or light colored) that matched the background coloration provided by patches of Concholepas ' most abundant prey (mussels or barnacles respectively). The variation in shell color was positively associated with the color of the most common prey ( r = 0.99). In laboratory experiments, shell coloration of C. concholepas depended on the prey-substrate used to induce metamorphosis and for the post-metamorphic rearing. The snail shell color matched the color of the prey offered during rearing. Laboratory manipulation experiments, switching the prey during rearing, showed a corresponding change in snail shell color along the outermost shell edge. As individuals grew and became increasingly indistinguishable from the surrounding background, cryptic individuals had higher survival (71%) than the non cryptic ones (4%) when they were reared in the presence of the predatory crab Acanthocyclus hassleri . These results suggest that the evolution of shell color plasticity during the early ontogeny of C. concholepas , depends on the color of the more abundant of the consumed prey available in the natural habitat where settlement has taken place; this in turn has important consequences for their fitness and survivorship in the presence of visual predators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.