The expression of Prostate Specific-Membrane Antigen (PSMA) increases in high-grade prostate carcinoma envisaging a role in growth and progression. We show here that clustering PSMA at LNCaP or PC3-PSMA cell membrane activates AKT and MAPK pathways thus promoting proliferation and survival. PSMA activity was dependent on the assembly of a macromolecular complex including filamin A, beta1 integrin, p130CAS, c-Src and EGFR. Within this complex beta1 integrin became activated thereby inducing a c-Src-dependent EGFR phosphorylation at Y1086 and Y1173 EGF-independent residues. Silencing or blocking experiments with drugs demonstrated that all the complex components were required for full PSMA-dependent promotion of cell growth and/or survival in 3D culture, but that p130CAS and EGFR exerted a major role. All PSMA complex components were found assembled in multiple samples of two high-grade prostate carcinomas and associated with EGFR phosphorylation at Y1086. The expression of p130CAS and pEGFRY1086 was thus analysed by tissue micro array in 16 castration-resistant prostate carcinomas selected from 309 carcinomas and stratified from GS 3+4 to GS 5+5. Patients with Gleason Score ≤5 resulted negative whereas those with GS≥5 expressed p130CAS and pEGFRY1086 in 75% and 60% of the cases, respectively.Collectively, our results demonstrate for the first time that PSMA recruits a functionally active complex which is present in high-grade patients. In addition, two components of this complex, p130CAS and the novel pEGFRY1086, correlate with progression in castration-resistant patients and could be therefore useful in therapeutic or surveillance strategies of these patients.
Infectious pneumonia induced by multidrug resistant (MDR) Acinetobacter baumannii strains is among the most common and deadly forms of healthcare acquired infections. Over the years, different strategies have been put in place to increase host susceptibility to MDR A. baumannii, since only a self-limiting pneumonia with no or limited local bacterial replication was frequently obtained in mouse models. Direct instillation into the trachea or intranasal inoculation of the bacterial suspension are the techniques used to induce the infection in most of the preclinical models of pneumonia developed to date. More recently, the oropharyngeal aspiration procedure has been widely described in the literature for a variety of purposes including pathogens administration. Aim of this study was to compare the oropharyngeal aspiration technique to the intranasal inoculation and intratracheal instillation in the ability of inducing a consistent lung infection with two MDR A. baumannii clinical isolates in immunocompromised mice. Moreover, pneumonia obtained by bacteria administration with two out of three techniques, intratracheal and oropharyngeal, was characterised in terms of histopathology of pulmonary lesions, biomarkers of inflammation level and leukocytes cells infiltration extent after mice treatment with either vehicle or the antibiotic tigecycline. The data generated clearly showed that both strains were not able to colonize the lungs when inoculated by intranasal route. By contrast, the bacterial load in lungs of mice intratracheally or oropharyngeally infected significantly increased during 26 hours of monitoring, thus highlighting the ability of these strains to generate the infection when directly instilled into the lower respiratory airways. Furthermore, the intragroup variability of mice was significantly reduced with respect to those intranasally administered. Tigecycline was efficacious in lung bacterial load and cytokines release reduction. Findings were supported by semi-quantitative histopathological evaluation of the pulmonary lesions and by inflammatory biomarkers analysis. To conclude, both intratracheal instillation and oropharyngeal aspiration techniques showed to be suitable methods for inducing a robust and consistent pneumonia infection in mice when difficult MDR A. baumannii clinical isolates were used. Noteworthy, oropharyngeal aspiration not requiring specific technical skills and dedicated equipment, was proven to be a safer, easier and faster technique in comparison to the intratracheal instillation.
A flow cytometry method, to monitor peripheral lymphocytes phospholipidosis, has been set up using a single staining with Nile red and double staining with Nile red and anti-CD3 monoclonal antibody. Blood has been collected from rats treated with amiodarone (phospholipidogenic antiarrhythmic drug). By flow cytometer, it is possible to detect phospholipids, using Nile red, a probe for intracellular lipids staining, changing its fluorescence on the stained lipid basis. CD3 antigen has been selected to focus on T cells, to evaluate whether these cells are the target of phospholipidosis amiodarone-dependent. In the study A, Sprague-Dawley rats were treated with three different doses (75, 150, and 300 mg kg(-1) day(-1)) of amiodarone or vehicle alone, for 14 days, followed by 14 days of recovery: Data obtained show that by flow cytometry, with Nile red alone, it is possible to detect a dose- and time-related response of phospholipidosis-positive lymphocytes; a partial recovery is also assessed. In the study B, Sprague-Dawley rats were treated with a single dose (300 mg kg(-1) day(-1)) of amiodarone, for 14 days: Data obtained show that animals treated with amiodarone have a significant increase of phospholipidosis-positive lymphocytes (p = 0.008), in particular of CD3+ cells (p = 0.0056). Transmission electron microscopy analysis confirmed data obtained by flow cytometry. This work shows that flow cytometry with Nile red could be a good tool to monitor ex vivo phospholipidosis in lymphocyte cells of animals treated with amiodarone: The phospholipidogenic effect is more evident focusing on CD3+ T lymphocytes, thus suggesting that these cells are probably the target of phospholipidosis.
Aberrant glycosylation is one of the most constant traits of malignant cells. The CaMBr1 hexasaccharide antigen, originally defined on the human breast carcinoma cell line MCF7, is expressed on some normal tissues but overexpressed in a high percentage of human breast, ovary, prostate and lung carcinomas. CaMBr1 overexpression is associated with poor prognosis. The epitope consists of the tetrasaccharide Fuc(alpha1-2)Ga1(beta1-3)GalNAc(beta1-3)Ga1alpha-O-spacer, which has recently become available as a synthetic oligosaccharide. Here we report the CaMBr1 tetrasaccharide conjugation to two different carrier proteins (CRM197 and KLH) and the evaluation of conjugate immunogenicity in mice following their administration in various vaccine formulations with two adjuvants (MPL-SE and Detox-PC). Radioimmunoassay to determine the level and isotype of anti-tetrasaccharide antibodies in mouse sera, and cytofluorimetric analysis and 51Cr-release assay on human tumor cells, to evaluate specificity of binding and complement-dependent lysis respectively, identified CaMBr1-CRM197, in association with the MPL-SE adjuvant, as the best vaccine formulation. This combination induced (1) production of tetrasaccharide-specific antibodies, with negligible side-effects; (2) antibodies with complement-mediated cytotoxic activity on human CaMBr1-positive cells and (3) a high titer of IgG1 detected in sera obtained 3 months after the first injection, indicating that the anti-tetrasaccharide antibody response was mediated by T cell activation. The availability of CaMBr1-glycoconjugate in the minimal and functional antigenic structure and the identification of an efficacious vaccine formulation opens the way to exploring the activity of this glycoconjugate in a clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.