This study investigates how the petrographic features of Klepa Nafpaktias sandstones affect their behavior in construction applications such as concrete, in environmental applications such as energy storage as well as whether they are suitable for the above uses. For achieving this goal, sandstones (ten samples) were collected in order to study their petrographic characteristics using petrographic microscope and GIS software, as well as their basic physical, mechanical and physicochemical properties were also examined. Concrete specimens (C25/30) were made according to international standards including the investigated aggregate rocks in various grain sizes. Various sandstones were tested and classified in three district groups according to their physicomechanical features as well as to their petrographic and microtopographic characteristics. Concrete strength’s results determined the samples into three groups which are in accordance with their initial classification which was relative to their grain size (coarse to fine-grained). As the grain size decreases their physicomechanical and physicochemical properties get better resulting in higher concrete strength values (25 to 32 MPa). Furthermore, the proposed ratio C/A (crystals/mm2) seems to influence the aggregate properties which constitute critical factors for the final concrete strength, presenting the more fine-grained sandstones as the most suitable for concrete aggregates. Concerning the use of Klepa Nafpaktias sandstones as potential energy reservoirs, the studied sandstones presented as suitable for CO2 storage according to their physicomechanical characteristics.
The aim of this study is to assess the type, thermal maturity and the petroleum generation potential of the Upper Jurassic Naokelekan Formation, occurring across the Kurdistan Region of Iraq, by applying organic petrographical methods and Rock-Eval analysis. The Rock-Eval data would indicate the presence of kerogen types III, IV and II as the main constituents. However, the qualitative petrographical evaluation revealed that the main organic constituents are solid hydrocarbons, in the form of microgranular migrabitumens, with minor amounts of pyrobitumens. These secondary particles have affected the results of the Rock-Eval analysis and would have led to misinterpretation of organic matter typification based on pyrolysis results only. The combined results of petrography and pyrolysis indicate an active petroleum system within the Upper Jurassic sequence, where hydrocarbons are generated and reservoired within suitable lithologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.