<p>Mountain lakes are often remote, located in environments that experience cold temperatures, high incident solar and ultraviolet radiation, and prolonged ice and snow cover. They are, therefore, frequently dilute and oligotrophic. Together these factors can a&#64256;ect mountain lake ecosystem structure, diversity, and productivity. However, distant human activities resulting in atmospheric pollution, as well as more local disturbances, such as fish stocking, potentially increase nutrient inputs and alter mountain lake ecosystems. Our research addresses how these human activities have altered algal production in Uinta Mountain (Utah, USA) lakes. Sedimentary chlorophyll a and its derivatives were measured using visible reflectance spectroscopy in short sediment cores from a total of 12 lakes, including both alpine and subalpine lakes, to determine trends in algal production. All sediment cores were dated using <sup>210</sup>Pb and <sup>14</sup>C dating, and the records were shown to extend back 300 to 500 years. Our results show that regardless of whether lakes were stocked or not, algal production remained virtually unchanged until 1950 when it increased dramatically in most lakes. The widespread distribution of the sites points to a regional stressor, such as atmospheric deposition of nutrients, as being the main cause for increased algal production. Additional analyses, including diatoms and C and N isotopes, measured in sediments from some lakes support this finding. The few lakes where algal production trends differed showed either that algal production had changed little overtime or that it was variable throughout the record. Although speculative, the lake that showed unchanged algal production is surrounded by a wetland that may have contributed nitrogen to the lake throughout the record meaning that additional nitrogen had little effect on algal production. Lakes with more variable algal production were subalpine lakes. The variable trend may point to more complex pathways and transport of nitrogen from the catchment to the lakes at lower elevation sites. Our findings show that remote mountain lakes, which typically are important water resources and biodiversity hotspots, are rapidly changing as a result of human activities, but not all of these lakes are responding in the same way. To effectively protect mountain lakes it will be important to identify and quantify influential factors affecting lake response to anthropogenic stressors.&#160;&#160;</p>
Figure S1. Bayesian Information Criteria (BIC) and Residual Sum of Squares (RSS) from breakpoint analysis of (A) the temperature record from Duchesne County, Utah and the sedimentary chlorophyll-a (Chl-a(s)) concentrations of (B) Birdsong Lake, (C) Jessen Lake and (D) Hidden Lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.