Planarians contain a large population of stem cells, named neoblasts, and use these for continuous turnover of all cell types. In addition, thanks to the amazing flexibility of these cells, planarians respond well to the effects of stressful situations, for example activating regeneration after trauma. How neoblasts respond to stress and support continuous proliferation, maintaining long-term stability, is still an open question. Heat shock proteins (HSPs) are a complex protein family with key roles in maintaining protein homeostasis, as well as in apoptosis and growthrelated processes. We recently characterized some planarian homologs of hsp genes that are highly expressed in mammalian stem cells, and observed that some of them are critical for neoblast survival/maintenance. The results of these studies support the notion that some HSPs play crucial roles in the modulation of pathways regulating stem cell activity, regeneration and tissue repair. In this review we compare the evidence available for planarian hsp genes and focus on questions emerging from these results.
The natural alkaloid sanguinarine has remarkable therapeutic properties and has been used for centuries as a folk remedy. This compound exhibits interesting anticancer properties and is currently receiving attention as a potential chemotherapeutic agent. Nevertheless, limited information exists regarding its safety for developing organisms. Planarians are an animal model known for their extraordinary stem cell-based regenerative capabilities and are increasingly used for toxicological and pharmacological studies. Here, we report that sanguinarine, at micromolar concentrations, perturbs the regeneration process in the planarian Dugesia japonica. We show that sanguinarine exposure causes defects during anterior regeneration and visual system recovery, as well as anomalous remodelling of pre-existing structures. Investigating the effects of sanguinarine on stem cells, we found that sanguinarine perturbs the transcriptional profile of early and late stem cell progeny markers. Our results indicate that sanguinarine exposure alters cell dynamics and induces apoptosis without affecting cell proliferation. Finally, sanguinarine exposure influences the expression level of H , K-ATPase α subunit, a gene of the P-type-ATPase pump family which plays a crucial role during anterior regeneration in planaria. On the whole, our data reveal that sanguinarine perturbs multiple mechanisms which regulate regeneration dynamics and contribute to a better understanding of the safety profile of this alkaloid in developing organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.