We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow™ DNA Damage Kit— p53, γH2AX, Phospho-histone H3. For these experiments seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and non-genotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hrs. At 4 and 24 hrs cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all inter-laboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or non-genotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals’ predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay.
The marine hydrocarbonoclastic bacterium Alcanivorax borkumensis is able to degrade mixtures of n-alkanes as they occur in marine oil spills. However, investigations of growth behavior and physiology of these bacteria when cultivated with n-alkanes of different chain lengths (C 6 to C 30 ) as the substrates are still lacking. Growth rates increased with increasing alkane chain length up to a maximum between C 12 and C 19 , with no evident difference between even-and odd-numbered chain lengths, before decreasing with chain lengths greater than C 19 . Surface hydrophobicity of alkane-grown cells, assessed by determination of the water contact angles, showed a similar pattern, with maximum values associated with growth rates on alkanes with chain lengths between C 11 and C 19 and significantly lower values for cells grown on pyruvate. A. borkumensis was found to incorporate and modify the fatty acid intermediates generated by the corresponding n-alkane degradation pathway. Cells grown on distinct n-alkanes proved that A. borkumensis is able to not only incorporate but also modify fatty acid intermediates derived from the alkane degradation pathway. Comparing cells grown on pyruvate with those cultivated on hexadecane in terms of their tolerance toward two groups of toxic organic compounds, chlorophenols and alkanols, representing intensely studied organic compounds, revealed similar tolerances toward chlorophenols, whereas the toxicities of different n-alkanols were significantly reduced when hexadecane was used as a carbon source. As one adaptive mechanism of A. borkumensis to these toxic organic solvents, the activity of cis-trans isomerization of unsaturated fatty acids was proven. These findings could be verified by a detailed transcriptomic comparison between cultures grown on hexadecane and pyruvate and including solvent stress caused by the addition of 1-octanol as the most toxic intermediate of n-alkane degradation.
The potential for N -nitrosamine impurities in pharmaceutical products presents a challenge for the quality management of medicinal products. N -Nitrosamines are considered cohort-of-concern compounds due to the potent carcinogenicity of many of the structurally simple chemicals within this structural class. In the past 2 years, a number of drug products containing certain active pharmaceutical ingredients have been withdrawn or recalled from the market due to the presence of carcinogenic low-molecular-weight N , N -dialkylnitrosamine impurities. Regulatory authorities have issued guidance to market authorization holders to review all commercial drug substances/products for the potential risk of N -nitrosamine impurities, and in cases where a significant risk of N -nitrosamine impurity is identified, analytical confirmatory testing is required. A key factor to consider prior to analytical testing is the estimation of the daily acceptable intake (AI) of the N -nitrosamine impurity. A significant proportion of N -nitrosamine drug product impurities are unique/complex structures for which the development of low-level analytical methods is challenging. Moreover, these unique/complex impurities may be less potent carcinogens compared to simple nitrosamines. In the present work, our objective was to derive AIs for a large number of complex N -nitrosamines without carcinogenicity data that were identified as potential low-level impurities. The impurities were first cataloged and grouped according to common structural features, with a total of 13 groups defined with distinct structural features. Subsequently, carcinogenicity data were reviewed for structurally related N -nitrosamines relevant to each of the 13 structural groups and group AIs were derived conservatively based on the most potent N -nitrosamine within each group. The 13 structural group AIs were used as the basis for assigning AIs to each of the structurally related complex N -nitrosamine impurities. The AIs of several N -nitrosamine groups were found to be considerably higher than those for the simple N , N -dialkylnitrosamines, which translates to commensurately higher analytical method detection limits.
N-Ethyl-N-nitrosourea (ENU) was evaluated as part of the Stage III trial for the rat Pig-a gene mutation assay. Groups of six- to eight-week-old male Sprague Dawley (SD) or Fischer 344 (F344) rats were given 28 daily doses of the phosphate buffered saline vehicle, or 2.5, 5, or 10 mg/kg ENU, and evaluated for a variety of genotoxicity endpoints in peripheral blood, spleen, liver, and colon. Blood was sampled predose (Day-1) and at various time points up to Day 57. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD592-) and RET(CD592-) frequencies. Consistent with the results from a reference laboratory, RBC(CD592-) and RET(CD592-) frequencies increased in a dose and time-dependent manner, producing significant increases at all doses by Day 15, with similar frequencies seen in both rat strains. ENU also induced small but significant increases in % micronucleated RETs on Days 4 and 29. No significant increases in micronuclei were seen in the liver or colon of the ENU-treated SD rats. Hprt and Pig-a lymphocyte mutation assays conducted on splenocytes from Day 56 F344 rats detected two- to fourfold stronger responses for Hprt than Pig-a mutations. Results from the in vivo Comet assay in SD rats at Day 29 showed generally weak increases in DNA damage in all tissues evaluated. The results with ENU indicate that the Pig-a RET and RBC assays are reproducible, transferable, and complement other genotoxicity endpoints that could potentially be integrated into 28-day repeat dose rat studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.