Antiviral targeting of virus envelope proteins is an effective strategy for therapeutic intervention of viral infections. Here, we took a computer-guided approach with the aim of identifying new antivirals against the envelope protein E2 of bovine viral diarrhea virus (BVDV). BVDV is an enveloped virus with an RNA genome responsible for major economic losses of the cattle industry worldwide. Based on the crystal structure of the envelope protein E2, we defined a binding site at the interface of the two most distal domains from the virus membrane and pursued a hierarchical docking-based virtual screening search to identify small-molecule ligands of E2. Phenyl thiophene carboxamide derivative 12 (PTC12) emerged as a specific inhibitor of BVDV replication from in vitro antiviral activity screening of candidate molecules, displaying an IC of 0.30 μM against the reference NADL strain of the virus. Using reverse genetics we constructed a recombinant BVDV expressing GFP that served as a sensitive reporter for the study of the mechanism of action of antiviral compounds. Time of drug addition assays showed that PTC12 inhibited an early step of infection. The mechanism of action was further dissected to find that the compound specifically acted at the internalization step of virus entry. Interestingly, we demonstrated that similar to PTC12, the benzimidazole derivative 03 (BI03) selected in the virtual screen also inhibited internalization of BVDV. Furthermore, docking analysis of PTC12 and BI03 into the binding site revealed common interactions with amino acid residues in E2 suggesting that both compounds could share the same molecular target. In conclusion, starting from a targeted design strategy of antivirals against E2 we identified PTC12 as a potent inhibitor of BVDV entry. The compound can be valuable in the design of antiviral strategies in combination with already well-characterized polymerase inhibitors of BVDV.
Infection of professional antigen presenting cells by viruses can have a marked effect on these cells and important consequences for the generation of subsequent immune responses. In this study, we demonstrate that different strains of bovine viral diarrhea virus (BVDV) infect bovine dendritic cells differentiated from nonadherent peripheral monocytes (moDCs). BVDV did not cause apoptosis in these cells. Infection of moDC was prevented by incubating the virus with anti-E2 antibodies or by pretreating the cells with recombinant E2 protein before BVDV contact, suggesting that BVDV infects moDC through an E2-mediated mechanism. Virus entry was not reduced by incubating moDC with Mannan or ethylenediaminetetraacetic acid (EDTA) before infection, suggesting that Ca(2+) and mannose receptor-dependent pathways are not mediating BVDV entry to moDC. Infected moDC did not completely upregulate maturation surface markers. Infection, but not treatment with inactivated virus, prevented moDC to present a third-party antigen to primed CD4(+) T cells within the first 24 hours postinfection (hpi). Antigen-presenting capacity was recovered when viral replication diminished at 48 hpi, suggesting that active infection may interfere with moDC maturation. Altogether, our results suggest an important role of infected DCs in BVDV-induced immunopathogenesis.
Low-cost high-throughput methods applicable to any virus strain are required for screening antiviral compounds against multiple field strains. Colorimetric cell-viability assays are used for this purpose as long as the viruses are cytopathic (CP) in cell culture. However, bovine viral diarrhoea virus (BVDV) strains circulating in the field are mostly non-cytopathic (NCP). An In Cell-ELISA aimed to measure viral infectivity by detecting a conserved protein produced during viral replication (non-structural protein 3, "NS3") was developed. The ELISA is performed without harvesting the cells, directly on the 96-wells culture plate. NS3 In Cell-ELISA was tested for its ability to assess BVDV-specific antiviral activity of recombinant bovine type I and III IFNs. Results correlated to those measured by qRT-PCR and virus titration. NS3 In Cell-ELISA was also efficient in estimating the IC50 of two compounds with different antiviral activity. Estimation of the 50% inhibition dose of each IFN using six BVDV strains of different biotype and genotype showed that CP strains were more susceptible to both IFNs than NCP, while type 2 NCP viruses were more sensitive to IFN-I. The In Cell-ELISA format using a detector antibody against a conserved non-structural protein can be potentially applied to accurately measure infectivity of any viral strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.