Shigella spp. are among the enteric pathogens with the
highest attributable incidence of moderate-to-severe diarrhea in children under
5 years of age living in endemic areas. There are no vaccines available to
prevent this disease. In this work, we investigated a new
Shigella vaccine concept consisting of non-living,
self-adjuvanted, Lactococcus lactis bacterium-like particles
(BLP) displaying Shigella invasion plasmid antigen (Ipa) B and
IpaD and examined its immunogenicity and protective efficacy in adult and
newborn/infant mice immunized via the nasal route. Unique advantages of this
approach include the potential for broad protection due to the highly conserved
structure of the Ipas and the safety and practicality of a probiotic-based
mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and
BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool
IgA in a dose-dependent manner. Immune responses and protection were enhanced by
BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and
cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased
survival post-challenge. Ipa-specific antibody secreting cells were detected in
nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow
cells produced IpaB/D-specific antibodies and contributed to protection after
adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80%
protection against S. flexneri and S. sonnei,
respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and
IpaD serum antibodies; 90% were protected against S.
flexneri and 44% against S. sonnei. The
BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially
effective immunization of children against shigellosis.
Infection of professional antigen presenting cells by viruses can have a marked effect on these cells and important consequences for the generation of subsequent immune responses. In this study, we demonstrate that different strains of bovine viral diarrhea virus (BVDV) infect bovine dendritic cells differentiated from nonadherent peripheral monocytes (moDCs). BVDV did not cause apoptosis in these cells. Infection of moDC was prevented by incubating the virus with anti-E2 antibodies or by pretreating the cells with recombinant E2 protein before BVDV contact, suggesting that BVDV infects moDC through an E2-mediated mechanism. Virus entry was not reduced by incubating moDC with Mannan or ethylenediaminetetraacetic acid (EDTA) before infection, suggesting that Ca(2+) and mannose receptor-dependent pathways are not mediating BVDV entry to moDC. Infected moDC did not completely upregulate maturation surface markers. Infection, but not treatment with inactivated virus, prevented moDC to present a third-party antigen to primed CD4(+) T cells within the first 24 hours postinfection (hpi). Antigen-presenting capacity was recovered when viral replication diminished at 48 hpi, suggesting that active infection may interfere with moDC maturation. Altogether, our results suggest an important role of infected DCs in BVDV-induced immunopathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.