The formation of intermetallic phases during thermal treatments is a decisive point for the performance of duplex stainless steels, which may prevent the obtaining or provoke degradation of their properties. This paper presents an investigation on the corrosion resistance of duplex SAF 2205 steel as received and after solution annealing treatment. The objective was to evaluate the correlation between the solution annealing time, the resulting microstructural changes and the corrosion resistance of the steel through electrochemical tests of cyclic potentiodynamic polarization and double-cycle potentiokinetic reactivation (DL-EPR). The heat treatments were performed at 1100° C for 30, 120 and 240 min with subsequent air cooling. The results of the DL-EPR showed that although there was no presence of intermetallic phases even with the absence of intermetallic phases, the solution annealing time influenced the degree of chromium depletion of the samples, so that with the increase of time, there was an increase in the degree of chrome depletion.
In this work was investigated the microstructural evolution process of the duplex stainless steel SAF 2205 as-cast after solution annealing treatment. The aim was to detect the effects on the material microstructure by the cooling rate variation. The studied material were submitted to solution anneal at 1100 °C for 240 min, followed by cooling in water, air and furnace. The results evaluation was based on micrographic analysis, energy dispersive spectrometry measurements (EDS), X-ray diffraction and hardness tests. The ferrite volume fraction obtained in the microstructure increased with the cooling rate, because it causes diffusion inhibition of the steel constituent elements, promoting retention of the ferrite. The volume fraction of austenite phase increased with a lower cooling rate. The cooling rate is an important factor in defining the steel microstructure, particularly about intermetallic phases precipitation, which occurred by the slow cooling rate. Additionally, it was observed the precipitation of sigma phase.
Titanium and stainless steel are examples of biomaterials widely used in dental and orthopedic implants owing to their properties of good corrosion resistance and excellent biocompatibility. This paper reports on a study of the biomimetic method applied to titanium (cp-Ti) and 316L stainless steel. The method consists in immersing the metal substrate in a synthetic solution of SBF (simulated body fluid) whose composition, pH and temperature resemble those of human blood plasma. The coating on the two metals was effective for obtaining hydroxyapatite, which was confirmed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.