Although much is described about the molecules involved in neutrophil migration from circulation into tissues, less is known about the molecular mechanisms that regulate neutrophil entry into lymph nodes (LNs) draining a local inflammatory site. In this study, we investigated neutrophil migration toward LNs in a context of inflammation induced by immunization of BALB/c mice with OVA emulsified in CFA. We demonstrated that neutrophils can enter LNs of OVA/CFA-immunized mice not only via lymphatic vessels but also from blood, across high endothelial venules. By adoptive transfer experiments, we showed that this influx was dependent on an inflammatory-state condition and previous neutrophil stimulation with OVA/anti-OVA immune complexes. Importantly, we have demonstrated that, in the migratory pattern to LNs, neutrophils used L-selectin and P-selectin glycoprotein ligand-1, macrophage-1 Ag and LFA-1 integrins, and CXCR4 to get access across high endothelial venules, whereas macrophage-1 Ag, LFA-1, and CXCR4 were involved in their trafficking through afferent lymphatics. Strikingly, we found that stimulation with immune complexes significantly upregulated the expression of sphingosine-1-phosphate receptor 4 on neutrophils, and that treatment with the sphingosine-1-phosphate agonist FTY720 altered neutrophil LN-homing ability. These findings summarized in this article disclose the molecular pattern that controls neutrophil recruitment to LNs.
Cognitive decline is a hallmark of the aging nervous system, characterized by increasing memory loss and a deterioration of mental capacity, which in turn creates a favorable context for the development of neurodegenerative diseases. One of the most detrimental alterations that occur at the molecular level in the brain during aging is the modification of the epigenetic mechanisms that control gene expression. As a result of these epigenetic‐driven changes in the transcriptome most of the functions of the brain including synaptic plasticity, learning, and memory decline with aging. The epigenetic mechanisms altered during aging include DNA methylation, histone modifications, nucleosome remodeling, and microRNA‐mediated gene regulation. In this review, we examine the current evidence concerning the changes of epigenetic modifications together with the molecular mechanisms underlying impaired neuronal gene transcription during aging. Herein, we discuss the alterations of DNA methylation pattern that occur in old neurons. We will also describe the most prominent age‐related histone posttranslational modifications in the brain since changes in acetylation and methylation of specific lysine residues on H3 and H4 are associated to functional decline in the old. In addition, we discuss the role that changes in the levels of certain miRNAs would play in cognitive decline with aging. Finally, we provide an overview about the mechanisms either extrinsic or intrinsic that would trigger epigenetic changes in the aging brain, and the consequences of these changes, i.e., altered transcriptional profile and reactivation of transposable elements in old brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.